Category Archives: Health maintenance

Eat your greens – chlorophyll metabolites in our blood may be maintaining our blood anti-oxidants.

  • Eat your greens!
    Eat your greens!

    Everyone knows about CoQ10, with many people frequently taking it for ‘vascular health’ . It is true that ubiquinol in the blood stream is an anti-oxidant that helps maintain vascular integrity. Ubiquinol–10  is an endogenously synthesized lipid antioxidant that scavenges free radicals and is involved in a-tocopherol homeostasis. It prevents lipid peroxidation and in the process is oxidized to ubiquinone.

  • 95 % of the quinone is maintained as ubiquinol, which must be regenerated from ubiquinone after it prevents lipid oxidation.
  • The study below demonstrated derivatives of chlorophyll can catalyze the reduction of ubiquinone to generate ubiquinol in plasma. The chlorophyll in our system is obtained from green leafy vegetables, and it is derivatives of the chlorophyll that may be catalyzing the reforming of ubiquinol, rather than ascorbic acid, carotenoid, tocopherol and flavonoid antioxidants that are usually given the credit for this process.
  • In the blood stream, metabolites of chlorophyll , such as chlorophyllide a, pheophytin-a, pheophorbide-a, methyl pheophorbide-a, 10-OH-pheophorbide-a, 10- OH-methyl pheophorbide-a, pyro pheophorbide-a and methyl pyropheophorbide are formed and may catalyze the photoreduction of ubiquinone to ubiquinol.
  •  Both light and light-absorbing chlorophyll metabolites can be present in capillaries, arteries and veins of several animals including humans. If chlorophyll metabolites catalyze the photoreduction of plasma ubiquinol in vivo, it would be a novel mechanism to maintain high levels of plasma ubiquinol – and this is what the paper listed in it’s research proposes, is that light through our skin drives chlorophyl metabolites to regenerate the phytonutrient ubiquinol.
  • Dietary Chlorophyll Metabolites Catalyze the Photoreduction of Plasma ubiquinone
  • Bottom line: Eat your greens and get sunshine!

Consumption of fruits and vegetables was inversely associated with stroke incidence, stroke mortality, ischemic heart disease mortality, and CVD mortality.

Known modifiable risk factors for CVD include smoking, sedentary lifestyle, diet, dyslipidemia, hypertension, obesity, and type 2 diabetes.

The observed protective effect of consuming plant foods on chronic diseases is likely due to their bioactive components.

Plant Bioactives:

  1. Phytosterols are naturally-occurring plant sterols found in the non-saponifiable fraction of plant oils. Plants synthesize several types of phytosterols (e.g., sterols and stanols) that are structurally similar to cholesterol, except for the functional group substitutions on the sterol side chain at the C24 position. Beta-sitosterol (most abundant), campesterol, and stigmasterol comprise almost our entire intake of phytosterols. Since humans do not synthesize phytosterols, they must be obtained from the diet. The main dietary sources of naturally-occurring phytosterols are vegetable oils, nuts, grains and, to a lesser extent, fruits and vegetables. Commonly consumed products that are fortified with phytosterols, such as Benecol™ and Take Control™ are found in many foods. . Benecol spread contains stanol esters derived from tall oil (pine tree wood pulp) and Take Control margarine contains sterol esters from soybeans. Consuming 2–3 g/d of phytosterols from these products resulted in approximately 14% reduction in LDL  with no change in HDL. Thus, both sterols and stanols are equally effective in lowering LDL concentration. NCEP ATP 111 guuidelines: two grams of plant sterol or stanol esters daily for optimal dietary therapy for elevated LDL.
  2. Flavonoids: The most common flavonoids are flavones, flavanols, catechins, and anthocyanins, along with anthoxanthins. There is an inverse relationship between flavonoid intake and chronic diseases including CVD. Red wines contain an abundance of polyphenols including phenolic acids (for example, gallic acid, and caffeic acid), stilbenes (resveratrol), and flavonoids (for example, catechin, epicatechin, quercetin, rutin) . Gallic acid has more antioxidant activity than caffeic acid. Wine polyphenols can induce vasorelaxation via nitric oxide synthesis , decrease platlet aggregation, and decrease inflammatory mediators. Resveratrol is a polyphenol found principally in the skin of grapes and, in lesser amounts, in peanuts. It inhibits both LDL oxidation and platelet aggregation and scavanges free radicals.
  3. Lignans: Lignans are polyphenols found in plants, especially in flaxseed (secoisolariciresinol diglucoside), sesame seeds (sesamin, sesamolin), and soy, followed by whole-grains cereals (syringaresinol), and legumes, including nuts. Fruits and vegetables contain a wide variety of lignans (e.g., matairesinol (MAT), pinoresinol (PINO) and lariciresinol (LARI)) but in minute quantities. The proposed mechanisms by which dietary lignans could reduce the risk of CVD include the phytoestrogenic, and antioxidant activity of these compounds and their metabolites. Some plant lignans such as matairesinol (MAT), secoisolariciresinol (SECO), pinoresinol (PINO), and lariciresinol (LARI) are metabolized by intestinal bacteria to enterolignans (enterodiol and enterolactone) in various proportions.
  4. Resistant starches: Complex carbohydrates derived from starch contribute over half of humans’ daily energy requirements. Starch is a homopolysaccharide made in plants and stored in granules. Amylose and amylopectin are two polymers found in starch and are identified based on the glycosidic bond linking the α-D-glucose monomers. Amylose is a linear polymer with α-(1,4) linkages while amylopectin has linear α-(1,4) linkages and α-(1,6) branch points. There are four types of resistant starches – types one to four. Dietary sources of RS 1 include partially milled grains and seeds. RS 2 can be found in raw potatoes, legumes, just-ripe bananas, and high-amylose maize (HAM). RS 3 results from retrograded foods, such as potatoes, cereals, and breads. Chemically- or physically-modified starch and resistant maltodextrins are known as RS 4 and 5, respectively.  Due to lack of enzymatic hydrolysis, the direct contribution of glucose to blood from RS is minimal and allows for an attenuated post-prandial glycemic response.  Peripheral insulin sensitivity (Si) also improved by approximately 20% in individuals with metabolic syndrome consuming the same amount or RS.  There is  production of short chain fatty acids (SCFA) from RS fermentation by gut microbiota in the large intestine which tereby makes RS bioactive. The SCFA are capable of influencing risk, and even treatment, of NCDs such as diabetes and cancer through several mechanisms: decreasing luminal pH, enhancing mineral absorption, and stimulating the release of two satiety peptides known as glucagon-like peptide -1 (GLP-1) and peptide tyrosine tyrosine (PYY) to the periphery . RS can act as a prebiotic to selectively increase the concentration and viability of certain bacteria, such as Ruminococcus bromii .Intra-individual variation in gut microbiota may influence RS fermentation, the production of SCFA, and upregulation of GLP-1.
  5. Cyclic Dipeptides: Cyclic dipeptides (also known as 2,5dioxopiperazines; 2,5-diketopiperazines; cyclo (dipeptides); or dipeptide anhydrides) are relatively simple compounds and, therefore, are among the most common peptide derivatives found in nature. Consistent with a role for fermentation process in synthesis of cyclic dipeptides is the observation of high levels of cyclo (His-Pro) in foods that undergo fermentation and/or high heat treatment of protein-rich foods. Such examples are nutritional supplements (e.g., TwoCal HN and Jevity), milk, yogurt, sauces, and fermented fish . Active cyclic dipeptides include cyclo (His-Pro), cyclo (Leu-Gly), cyclo (Tyr-Arg), and cyclo (Asp-Pro). Of these only cyclo (his-Pro)[CHP] has been shown to be endogenous to animal kingdom. CHP may act as an appetite suppressant and satiety-inducer.  There is a possible role of CHP in insulin secretion and glucose metabolism.  CHP  causes higher insulin excursions without any change in C-peptide suggesting that CHP may decrease hepatic insulin clearance.    Items with CHP include tuna, fish sauce, Dried Shrimp , Spent Brewer’s Yeast hydrolysate, and others.
  6. Fruit Berries:  Polyphenols found in berries and other plant foods are particularly associated with anti-inflammatory, antioxidant, cardioprotective, and chemopreventive properties. Several compounds contribute to the antioxidant properties of berries and are typically found in the outer parts of the fruit or berry, most often as cinnamic and/or benzoic acid derivatives. Tanins, Anthocyanins,  carotenoids and stilbenes such as resveratrol are present in berries. Some amounts of resveratrol can be found in cranberries, strawberries, and other berries. Chokeberry, bilberry, and blackcurrant berries have the highest antioxidant capacity of the different berry fruits (umol Trolox/g fresh weight), and whole fruit extracts have greater antioxidant activity than many isolated phenolic compounds or vitamins . Strawberries are known to be high in phenolic compounds such as the phenolic acid derivative ellagic acid, and contain a significant amount of vitamin C. Blueberries are noted for a wide variety of anthocyanin compounds, while both cranberries and blueberries also contain significant concentrations of phenolic acids. Anti-oxidants in  Berries provide  anti-inflammatory activity, free radical scavenging and up-regulation of antioxidant enzyme genes, decreased levels and antioxidation of LDL, increases in circulating HDL, inhibition of platelet activation and aggregation, and improvements in endothelial function. Berries have been shown to provide improvements in blood pressure or hypertensive status due to increased NO bioavailability via activation of endothelial NO synthase.

Bioactive Plant Metabolites in the Management of Non-Communicable Metabolic Diseases

Statins’ effect on plasma levels of Coenzyme Q10 and improvement in myopathy with supplementatio

Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP  <– we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. To demonstrate that dietary chlorophyll metabolites can modulate ATP levels, we examined the effects of the chlorophyll metabolite pyropheophorbide-a (P-a) on ATP synthesis in isolated mouse liver mitochondria in the presence of red light (lmax5670 nm), which chlorin-type molecules such as P-a strongly absorb (Aronoff, 1950), and to which biological tissues are relatively transparent. We used P-a because it is an early metabolite of chlorophyll, however, most known metabolites of chlorophyll can be synthesized from P-a by reactions that normally take place in animal cells The same metabolite fed to the worm Caenorhabditis elegans leads to increase in ATP synthesis upon light exposure, along with an increase in life span.   Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight. We show that dietary metabolites of chlorophyll can enter the circulation, are present in tissues, and can be enriched in the mitochondria. When incubated with a light-capturing metabolite of chlorophyll, isolated mammalian mitochondria and animal-derived tissues, have higher concentrations of ATP when exposed to light, compared with animal tissues not mixed with the metabolite. The hypothesis is that photonic energy capture through dietary-derived metabolites may be an important means of energy regulation in animals.

  • To synthesize ATP, mitochondrial NADH reductase (complex I) and succinate reductase (complex II) extract electrons from NADH and succinate, respectively. These electrons are used to reduce mitochondrial CoQ10, resulting in ubiquinol (the reduced form of CoQ10). Ubiquinol shuttles the electrons to cytochrome c reductase (complex III), which uses the electrons to reduce cytochrome c, which shuttles the electrons to cytochrome c oxidase (complex IV), which ultimately donates the electrons to molecular oxygen. As a result of this electron flow, protons are pumped from the mitochondrial matrix into the inner membrane space, generating a trans-membrane potential used to drive the enzyme ATP-synthase.
  • Photons of red light from sunlight have been present deep inside almost every tissue in the body. Photosensitized electron transfer from excited chlorophyll-type molecules is widely hypothesized to be a primitive form of light-to-energy conversion that evolved into photosynthesis. Electrons would be transferred by a metabolite of chlorophyll to CoQ10, from a chemical oxidant present in the mitochondrial milieu. Many molecules, such as dienols, sulfhydryl compounds, ferrous compounds, NADH, NADPH and ascorbic acid, could all potentially act as electron donors. Intense red light between 600 and 700 nm has been reported to modulate biological processes. . Exposure to red light is thought to stimulate cellular energy metabolism and/or energy production by, as yet, poorly defined mechanisms. On a clear day the amount of light illuminating your brain would allow you to comfortably read a printed book. Photons between 630 and 800 nm can penetrate 25 cm through tissue and muscle of the calf . Adipose tissue is bathed in wavelengths of light that would excite chlorophyll metabolites. Utilization of these facts may have the potential for new therapies. A potential pathway for photonic energy capture is absorption by dietary-derived plant pigments. Dietary metabolites of chlorophyll can be distributed throughout the body where photon absorption may lead to an increase in ATP .

Chlorophyll-related compounds inhibit cell adhesion and inflammation in human aortic cells.

Chlorophyll Revisited Anti-inflammatory Activities of Chlorophyll a and inhibition of expression of TNFa

An Evidence Based Systematic Review of Chlorophyll by the Natural Standard Research Collaboration

An Evidence Based Systematic Review of Goji Lycium spp by the Natural Standard Research Collaboration

Risk of new-onset diabetes associated with statin use

 

 

 

Insane Medicine – Liraglutide (Saxenda) for weight loss!!

  • Liraglutide is a glucagon-like 1 peptide that has been available for diabetes management for a few years and now has an added FDA approval for weight loss management!!
  • There are more options for weight management as of now!
    There are more options for weight management as of now!

    obesity-big

  • To date, Phentermine/topiramate ER (Qsymia) is the most effective drug available. Locaserin (Belviq) is another approved drug for weight loss, but it is less effective.  However, it is better tolerated. Other options such as Xenical are helpful, but it prevents absorption of food and can cause excessive bloating and gas in some patients. Contrave (Wellbutrin and Naltrexone) is also effective but has neuropsychiatric effects.
  • Liraglutide is used to treat type 2 diabetes at a dose of 1.8 mg a day. It is injectable. The weight loss form of the drug is a dose of up to 3.0 mg a day injected. The amount of weight loss varies as the dose approaches the upper limit of 3 mg a day.
  • Liraglutide decreases appetite and therefore energy intake, which is how it causes weight loss. It also delays gastric emptying. Used as an adjunct to physical exercise and dieting, it has resulted in up to an 8 kg body weight loss over the 56 week course of treatment [ −8.0±6.7% (−8.4±7.3 kg)].
  • Liraglutide treatment was associated with reductions in cardiometabolic risk factors, including waist circumference, blood pressure, and inflammatory markers. Fasting lipid profiles were also improved as well. The combination of weight loss and improved glycemic control probably contributed to the observed reductions in the prevalence of prediabetes and the delayed onset of type 2 diabetes.
  • Side effects include an increased incidence of gallstones, which commonly increase with weight loss.  Nausea and constipation (or diarrhea) has been reported. Rarely, pancreatitis and kidney failure has occurred. The FDA has required a boxed warning about the risk of thyroid C-cell tumors in the package insert, and in patient’s with a family history of Multiple Endocrine Neoplasia Type 2 or medullary thyroid carcinoma, this treatment is to be avoided.
  • Treatment is started at 0.6 mg injected a day and increased weekly by another 0.6 mg until a total of 3 mg a day is injected. At 16 weeks, if a 4% body weight loss is not achieved, therapy should be stopped. Total cost per month is about $1000.00!
  • For patients who have a BMI>30 (Body mass index) and are not diabetic, or have a BMI>27 with a risk factor, such as hyperlipidemia or diabetes, Saxenda is a consideration for weight loss.
  • Liraglutide has effects on a number of metabolic systems
    Liraglutide has effects on a number of metabolic systems
    Liraglutide has effects on a number of metabolic systems
    Liraglutide has effects on a number of metabolic systems

    Liraglutide has effects on a number of metabolic systems
    Liraglutide has effects on a number of metabolic systems

Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress

A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management

Liraglutide (Saxenda) for Weight Loss

http://ajpgi.physiology.org/content/302/2/G225

Insane Medicine – Akkermansia muciniphila and the Gut biome

  • The bacteria in your gut create a huge ecosystem or biome that has major effects on your overall health. More and more studies are demonstrating this, including the one below.
  • The gut microbiota diversity and function plays a role in the development of obesity and metabolic ailments.
  • Akkermansia muciniphila is a mucin-degrading bacteria found in the mucus layer of the intestine that has been found to help improve your metabolic status by increasing insulin sensitivity and glucose regulation.
  • Obese individuals and those with Type 2 diabetes differ from leaner individuals in the constitution of their gut micobiome and the microbial gene richness. It has been found in mice that higher levels of  mucin-degrading bacteria (Akkermansia muciniphila) are inversely associated with body fat and glucose intolerance. In other words, these bacteria help improve glucose metabolism and improve overall metabolic health.
  • The article below demonstrated that Akkermansia muciniphila, when increased in the gut, resulted in healthier metabolic status in obese people. This was accomplished by caloric restriction, which then resulted in increased microbial gene richness ( a good thing) and improved glucose homeostasis and blood lipids. Following a FODMAP diet also increased Akkermansia muciniphila in the gut.
  • The higher the Akkermansia muciniphila bacteria levels are in the gut, it seems that you will have better glucose metabolism, better waist-to-hip ratios, lower fasting glucose levels, better triglyceride levels,  and better fat distribution.
  • Increasing amounts of fat in the form of fat hypertrophy is a proinflammatory condition and is associated with bad cardiometabolic risk. This inflammatory risk is measured through insulin levels, interleukin-6, lipopolysaccharide levels, and C reactive protein levels in the blood stream. Caloric restriction leads to increased Akkermansia muciniphila and other healthy bacteria, which increases the overall microbial gene richness. These bacteria lower the inflammatory markers through their metabolic activity. This results in better metabolic outcomes.
  • How does this all occur? Akkermansia muciniphila ferments waste products into other items that other beneficial bacteria species can feed on. Short chained fatty acids are one of those items as well as acetate, which becomes an anorectant when absorbed in the body. In other words, you eat less.
  • The key here is that the gut biome plays a tremendous role in our overall health, and caloric restriction results in a  boosting of the healthy richness of our gut biome, which is probably a key part of overall health!

KEY study in GUT :  http://gut.bmj.com/content/early/2015/05/22/gutjnl-2014-308778.full.pdf+html

Akkermansia

 

 

 

http://www.gutmicrobiotaforhealth.com/akkermansia-as-a-target-for-obesity-authors-explained-1496

 

http://www.biotanutrition.com/2015/01/17/akkermansia-muciniphila-a-biomarker-of-healthy-gut/

 

Dao M, Everard A, et al. Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut.2015. 

Gut Bacteria and Food Allergies:

  • Gut bacteria also seem to play an integral role in other aspects of our health including food allergies. The presence of Clostridia in our gut appears to be protective against food allergies by causing the release of Interleukin-22 from gut cells, thereby decreasing permeability of the gut to allergens, which cause allergic reaction. Without gut permeability, the antigens cannot create an allergic immune response. Food allergies have been increasing in recent times due  to modern dietary and hygienic practices, which disturb our natural gut biome.High fat diets, antibiotics,  and formula feeding have all affected our gut bacteria, some of which protect us against food allergies. In a study, it was shown that germ-free mice and mice treated with antibiotics both reacted to peanuts, however, when clostridia was introduced, the reaction went away! This demonstrates how Clostridia decreases food allergies.  The study, “Commensal bacteria protect against food allergen sensitization,” was the source of this information.
  • Clostridia protects against Food Allergies

Insane Medicine – The Lipoprotein-associated phospholipase A2 test for assessing early heart attack risk.

Lipoprotein-associated phospholipase A2 elevation is associated with greater stroke and heart attack risks.
Lipoprotein-associated phospholipase A2 elevation is associated with greater stroke and heart attack risks.

Lipoprotein-Associated_Ph000001 Lipoprotein-Associated_Ph000001b

  • The FDA approved a blood test for Lipoprotein-associated phospholipase A2 (Lp-PLA2) recently. Inflammation in fatty plaques spill out Lp-PLA2 into the blood stream, resulting in elevated levels in individuals with higher risk of heart attack and stroke. Likewise, patients with pre-diabetes tend to have a higher level.
  • Testing for the Lp-PLA2 elevation in patients with intermediate heart attack risk but no prior cardiac history offers the ability to asses for future risk. Elevation of Lp-PLA2 is associated with a double the risk of coronary heart disease and four times the risk of strokes than individuals with low levels of Lp-PLA2.
  • CRP is frequently used as a surrogate of inflammation, but it only tests for generalized body inflammation, whereas the Lp-PLA2 test demonstrates inflammation in the blood vessels themselves! An Lp-PLA2 level greater than 200 ng/mL indicates the need for aggressive cholesterol and blood pressure control.
  • http://www.revespcardiol.org/en/biomarkers-in-cardiovascular-medicine/articulo/13139386/

Insane Medicine – Even older people should watch their diet

Successful aging requires continued effort for the best outcome. Do you want to live to one hundred and be bed-bound or live to one hundred and be active? Successfully aging people need to consider healthful behaviors to maintain their independence and health. Conditions that affect people over sixty can be modified and lessened by nutritional strategies:

  1. Cardiovascular diseaseHigh blood pressure, cholesterol/triglycerides, and obesity are modifiable by diet and medication. Weight control allows for better mobility, less pain, and fewer heart attacks. Obesity is associated with sleep apnea, as well, which reduces quality of life because it makes you fatigued in the day time and generally weak.
  2. Cerebrovascular Disease: Such as strokes and dementia are impacted by high blood pressure and diet. First off, quit smoking to decrease your risk of dementia and stroke. Decrease your sodium intake to decrease your blood pressure (1500 mg of sodium a day is about right for an average diet.) Use herbs and spices to flavor your foods. Foods such as cold cuts, cheeses, breads, pizza, pasta dishes, snack foods, and soups have higher levels of sodium, so beware. Consider following the DASH diet: http://www.nhlbi.nih.gov/health/health-topics/topics/dash  and http://health.gov/dietaryguidelines/2015-scientific-report/ 
  3. Diabetes Control: Diabetes affects everything from your eyes to your kidneys. There is a four-fold increased risk of death from heart disease or stroke if you are diabetic. Take your medicines, track your hemoglobin A1C (sugar control measure) and eat  food with a low glycemic index. Eat food with less fat and avoid high-sugar content items, but include more vegetables and whole grains to maintain glucose control. It takes a lot of effort if you are diabetic, so don’t let diabetes take your life one leg at a time!
  4. Cancer: Get your recommended screening examinations. Also, maintain a healthy weight since obese people have higher risks of cancer!
  5. Chronic Kidney Disease: Another disease modifiable by diet control – CKD risk is increased if you have hypertension, diabetes, obesity, or cardiovascular disease. A healthy diet and physical activity will maintain your weight and blood pressure, minimizing aging’s impact on your kidneys!

Suggestions:

  • Eat bright colored vegetables (carrots, brocolli) and deep colored fruits (berries) for phytochemical, healthy support.
  • Chose whole, enriched, fortified grains and cereals, i.e. whole wheat bread.
  • Chose low and non-fat dairy products: Yogurt and low-lactose milk
  • Use herbs and spices to add flavors to meals
  • Lots of fluids: no sodas
  • Exercise

Insane Medicine: Mediterranean diet and Plant based diets to stop your heart from stopping!

Mediterranean diet-
Mediterranean diet-
The Mediterranean Pyramid
The Mediterranean Pyramid
Mediterranean_Pyramid
Mediterranean Pyramid
  • Adherence to the Mediterranean diet has been proven in trials to be associated with a decreased risk of early death, decreased heart disease risks, decreased cancer risk, and decreased incidence of dementia and other brain diseases. Eat healthy and you live healthy!
  • Stop Smoking. Be certain to exercise.
  • The Mediterranean diet has been shown in a 2013 New England Journal of Medicine study to decrease cardiovascular events. The diet allows moderate alcohol (wine), low meat/meat products, but moderate fish intake. Vegetables, fruits, nuts, legumes, and olive oil were the important components in this diet. The study revealed a 30 % risk reduction of cardiovascular events (stroke/heart attacks) among high risk people.
  • It was believed that the Mediterranean diet creates an environment in the body in which insulin sensitivity is improved, blood lipids status are improved, resistance to oxidation and inflammation occurs, and vasoreactivity is  decreased. The key components seem to be olive oil and nuts.
  • The Lyon Diet Heart study in 1994 showed that a canola based oil spread used for omega 3 fatty acid intake along with increased breads and fruits,  but less butter, cream, deli meat, and unprocessed meat decreased the chance of a heart attack from 4% to 1 % (relative risk).
  • Interestingly, the origins for the notion that meat may be a problem for our hearts resulted from the demonstration that Norwegians lived longer from the ravages of cardiovascular disease during the German occupation in World War 2 because their livestock was taken away. They were forced to eat a plant based diet that was more healthful!
  • The most interesting article showing that a plant based diet can really make a difference is a study by Essyeltyn et al. linked below. This study demonstrated that following a plant based diet eaten by 198 patients with high risk coronary artery disease (CAD)  decreased the event rate of new heart attacks and strokes to 0.6% in follow up, whereas those who ate a regular diet had a 62% rate of new heart attacks and strokes!! So what does this diet include? Here is the list:

Plant Based diet: (Esselstyn et al.)

  • Legumes
  • Whole grains
  • Lentils
  • Vegetables
  • Fruit
  • Flaxseed meal (omega 3 and omega 6 fatty acids)
  • multivitamin and B12.
  • Excluded are: NO oils, fish, fowl, meat, dairy, nuts, avocados. No fructose, no sucrose, no fruit juice, no salt, no syrup, and no molasses.

 

Why do the plant based diet? If you are at the end of your rope in cardiovascular status, such as untreatable heart disease or high stroke risk, this diet is VERY EFFECTIVE! It is harsh, but very effective, allowing a much better quality of life and longer life.Check the links below.

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/25198208    A way to reverse CAD? J Fam Pract. 2014 Jul;63(7):356-364b.

“A way to reverse CAD?” by Esselstyn et al (J Fam Pract. 2014;63:356-364,364a,364b

http://www.jfponline.com/home/article/a-way-to-reverse-cad/f74f8ebb9261a837f3511f407516c7e5.html  – the article by Esselstyn

http://www.nejm.org/doi/full/10.1056/NEJMoa1200303     Primary Prevention of Cardiovascular Disease with a Mediterranean Diet

 

Inhibition of dimethyarginine dimethylaminohydroxylase causes vasoconstriction.

Insane Medicine – Ways to help adjust your blood pressure

Control your Blood Pressure for long term health:

  • Eat a better diet and reduce salt intake
  • Be physically active
  • Take your prescribed medications as you and your doctor agree upon
  • Limit alcohol intake
  • Cope with stress more effectively
  • Maintain a healthy weight

According to the latest recommendations, hypertension is now considered to need intervention if it is 150/90 at the age of 60 or older, unless you are diabetic in which blood pressure above 140/90 needs intervention. Pre-hypertension is considered to be 120-139 systolic and 80-89 diastolic (the lower number).

Remember that blood pressure, when untreated, increases your risk of stroke, heart attacks, and peripheral artery disease.

Here are a few details to consider:

  1. Salt substitutes (potassium chloride and magnesium sulfate blended with normal salt) decrease blood pressure per some studies (American Journal of Clinical Nutrition) by ~4.9/1.5 mm of Hg lower. In the United States, most of our added salt comes from processed and packaged foods (80%) and less from the salt shaker. Salt substitutes have less of an impact on blood pressure reduction unless you add extra salt on your food yourself!
  2. Exercise for life: Per a recent article in JACC (Journal of the American College of Cardiology), those who maintain regular exercise throughout their lifespan and maintain fitness will delay the age at which hypertension affects your body. Men who exercise little typically reached a systolic blood pressure of 120 mm of Hg by age 46, whereas the fit individuals reached that number by age 54!
  3. Higher protein intake has been linked to lower average systolic and diastolic blood pressure per a recent study in the American journal of Hypertension. Over an 11 year period, those in the top third of a group consuming a lot of protein were 40 % less likely to develop hypertension than individuals who consumed the least amount of protein. The amount of protein they consumed was 102 grams, more than double the daily value normally recommended. Combining high protein diets with high fiber intake reduces hypertensive development by 59%. the source of protein does not appear to matter, whether it is animal or plant protein. Just eat healthy! The mechanism by which protein intake decreases blood pressure may be a result of amino acids which dilate blood vessels in addition to an overall healthier diet.
  4. Flaxseed is another food product that can be helpful in decreasing blood pressure. Flaxseed works best when it is used to substitute for other food products such as refined grains. Flaxseed has 55 calories per tablespoon, so it does add calories. It also has a lot of omega-3 alpha-linolenic acids in it, in addition to lignans, a fiber-like polyphenol. The amount of fiber and antioxidants in flaxseeds are excellent. In a recent article in the journal Hypertension, 30 grams of milled flaxseed in foods such as bagels, buns, muffins, and pasta resulted in blood pressure reductions of 10/7 mm of Hg. This was as effective as blood pressure medications!

 

Insane medicine – Replace saturated fats in your diet with Vegetable oils (Linoleic acid) to lower cardiac risk!

Replacing saturated fat with vegetable oil is associated with lower coronary artery disease risk based in a study in Circulation recently released (Circulation. 2014;130:1568-1578).

  1. Exchanging 5% of consumed calories from saturated fat sources (red meat and butter) with foods containing linoleic acid (an n-g fatty acid that is polyunsaturated and found in vegetable oil, seeds, and nuts) can decrease coronary heart disease events by 9%. So swap out your saturated fat sources with polyunsaturated fat to help out your heart!
  2. Linoleic acid (polyunsaturated fat) intake was inversely associated with heart disease, such that the more linoleic acid taken in, the lower the risk of heart disease. At the best outcomes, there was a 15% lower heart-risk and 21% lower death rates in those who consumed the most linoleic acid sources.
  3. Replace butter, lard, and fat from red meat with liquid vegetable oils when you prepare and cook foods.  By replacing saturated fat in this way, total and LDL cholesterol is reduced.
  4. Sources of Linoleic acid (an omega-6 polyunsaturated fat) include: soybean, sunflower, safflower, and corn oil, as well as nuts and seeds.
  5. Fats have 9 calories per gram. Use 1.5-3 tablespoons of vegetable oil daily to get 5-10% of calories from linoleic acid (100-200 calories total) It is important to replace saturated fat with these sources of polyunsaturated fats (linoleic acid) and not just adding this to the total fat intake.
  6. Linoleic acid does not promote inflammation based on a neutral effect on inflammatory markers or arachidonic acid levels (which increase in inflammation).

Cooking oil examples:

Safflower oil – 78 % PUFA (Linoleic acid)

Sunflower oil – 69% PUFA (Linoleic acid)

Corn oil – 62%

Soybean oil  – 61 %

Peanut Oil  – 34%

Canola oil  – 29%

Lard – 12 %

Palm oil – 10%

Olive oil  – 9%

Butterfat  – 4%

Palm kernel oil  – 2%

Coconut oil – 2%

 

General notes about fats:

  • Greater intake of trans-fats (hyrogenated oil for example) relative to polyunsaturated fats (PUFA) is associated with higher cardiac risk. N-3 omega fatty acids and alpha-linoleic (ALA), also an n-3 fatty acid) are associated with good cardiac risk. Linoleic acid (LA) , an n-6 PUFA most commonly eaten in the Western diets, also has been shown to be beneficial in preventing cardiac risk, but less investigation had been done regarding this fatty acid. Linoleic acid reduces LDL levels, which is a positive effect for decreasing cardiac risk. LA can be elongated into arachidonic acid, which is inflammatory and thrombogenic (blood clot forming). Studies have shown that LA is in fact not pro-inflammatory in the body. It does not increase C-reactive protein . It also has no effect on other inflammatory marker such as cytokines, fibrinogen, soluble vascular adhesion molecules, plasminogen activator inhibitor type 1, or tumor necrosis factor-α.
  • There appears to be a linear response to increasing LA intake – as one takes in more LA, there is less coronary events (heart attacks) and less death! Thus n-6 fatty acids (Linoleic acid) has cardioprotective effects! Increasing LA intake by 5% led to 9% less coronary heart disease and 13% less death!
  • It had been assumed that LA is converted to arachidonic acid (AA), which is inflammatory. AA  is the main precursor of eicosanoids with inflammatory and thrombogenic properties, such as prostaglandin E2, thromboxane A2, and leukotriene B4. It has been found, however, that the conversion of LA to AA is tightly controlled in the body, thus there is no increase in inflammation.

 

Insane Medicine – Lowering Dementia Risk

Dementia
Dementia

Research is demonstrating that treating multiple risk factors for dementia results in better outcomes than treating each factor individually. Risk factors include:

  1. Poor nutrition
  2. obesity’smoking
  3. physical inactivity
  4. cardiovascular risks
  5. depression
  6. social isolation
  7. lack of mental stimulation

Strategies to help deal with these risks have been shown to help improve cognitive performance. Just treating single variables such as high blood pressure or lack of exercise has less effect than hitting multiple factors at once. A study in Lancet Neurology (August 2014) revealed that one-third of Alzheimer’s Disease (AD) cases are attributable to modifiable factors and thus AD may be reduced in prevalence by improved education , treatment of depression, and management of vascular risk factors such as physical inactivity, smoking, hypertension, obesity, and diabetes.

  • Get regular exercise: this reduces stress, improves blood flow to the brain, strengthens connection of neurons in the brain, improves medical health and balance, thus reducing falls. The goal is 30 minutes of aerobic activity five times a week (walking, dancing, biking as examples) and strength training twice a week.
  • Challenge your brain: Demanding brain activities utilizing different aspects of your intellect help protect against cognitive decline, making your mind more efficient and able to focus. So expose yourself to new ideas and challenges mentally, so that you can maintain your memory skills and concentration abilities. Things like cross-word puzzles, checkers or cards help build up your brain as do math problems. Research shows that staying intellectually engaged may prevent AD. These types of brain challenges add to your cognitive reserve. Social interaction also plays a role in preventing cognitive decline. It has been found that those who play more games or puzzles were more likely to perform better on test of memory, learning, and information processing. They also have greater brain volume in areas associated with memory. Mental workouts enhance brain blood flow and promote cell growth, stronger neuron connections, and keep the brain efficient. It makes the brain less sensitive to trauma such as drugs, stroke, or disease. The internet has resources to help:  http://brainworkshop.sourceforge.net/  or http://sporcle.com/  or http://syvum.com/teasers/  or http://www.braingle.com/  or http://www.billsgames.com/brain-teasers/   So consider crossword puzzles, jigsaw puzzles, word searches, math problems, an brainteasers to exercise your mind!
  • Treat mental illness, especially depression: Sadness, hopelessness, and lack of energy may signal depression. Depression is associated with a high risk of cognitive decline. See your doctor to help get treatment.
  • Eat a healthy diet: Eat complex carbohydrates such as whole grains, legumes, fruits, and vegetables. Avoid sodas, sweets, and excess sugars. Protein is essential for growth and cell maintenance, so consider lean meats, fish, poultry, eggs, low fat dairy,  nuts, and beans. Chose healthy fats such as omega-3 fatty acids found in flaxseed oil, fish, and nuts. Monounsaturated fats are also healthful and is present in olive and canola oils. Polyunsaturated fats from corn, safflower, and sunflower seeds are fine as well. Avoid trans-fats. Remember to include your micronutrients and phytochemicals (found in plant sources).
  • Treat cardiovascular risks: Stop smoking, lose weight, be physically active, treat high blood pressure and diabetes, take your prescribed medications.

Avoid Trans-fats in your diet. It is found in many junk foods, especially fast foods, processed foods, baked goods, margarine, and other sources. These products and trans-fats perform about 10% worse on cognitive tests than those who consumed minimal amounts. Trans-fats promote oxidative stress and damage the memory center of the brain, the hippocampus.

Magnesium is essential for brain functioning. It is found in green leafy vegetables, whole grains, nuts, legumes, and hard water. Magnesium helps in energy production, needed especially in the brain. It helps in the formation and release of neurotransmitters as well as functioning of connections in the brain (synapses) to process new information. Studies in Molecular Brain (September 2014) demonstrated that magnesium L-threonate (MgT) supplementation prevented memory decline and prevented synapse loss in mice prone to AD. It also reduced the deposition of beta-amyloid protein in the brain (a cause of AD) Risk factors for magnesium depletion include chronic alcoholism, diabetes, excessive coffee intake, inflammatory bowel disease such as Chrone’s disease, diuretic intake, liver and kidney disease,  and excessive soda and salt intake.The RDA is 400 mg a day – http://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/  This link points to sources of magnesium for your diet. Foods included are Almonds, spinach, cashews, peanuts, shredded wheat cereal, soy milk, black beans, whole wheat bread, avocado, baked potato, brown rice, plain yogurt, and others.

This sounds dumb but avoid head injury – it has been shown that older adults who have a head injury are at higher risk of dementia, especially over the age of 65. The main reason for these injuries are falls, many of which are preventable and may be due to deconditioning and weakness from lack of exercise. Remember that exercise increases strength and balance.

Remember to not be anxious over your health – don’t become a hypochondriac. Maintain your health through proper eating, exercise, risk management of cardiovascular problems (high blood pressure, high cholesterol, smoking cessation), taking your prescribed medications, and regular physician check-ups will maximize your health. Don’t get preoccupied with health matters and fears of disease such that they interfere with your daily activities and enjoyments in life. Keep yourself busy and distracted by learning new tasks and volunteering. Consider meditation, relaxing your body and mind, concentrating on the present moment. Exercise your body to reduce stress and reduce your anxiety. This will build your physical strength and increase your feelings of well-being. Keep your head up with positive feeling and be grateful for the good things in your life and those things you can control. Don’t stress out!!

 

 

 

Insane medicine – Vitamin D supplements help reduce cancer and cardiovascular risk

Vitamin D supplementation has huge beneficial health effects. First, lets discuss the physiology of Vitamin D and the effects of deficiency.

Vitamin D

The process starts with ingestion of Vitamin D2 (ergocalciferol) from plant sterols or yeast or with Vitamin D3 (cholecalciferol) obtained from oily fish.. UVB irradiation of skin 7-dehydrocholesterol can also produce vitamin D. These vitamin D precursors go to the liver where they are converted to 25-hydroxyvitamin D (which is what your doctor tests for to see if you are deficient in vitamin D!). 25-hydroxyvitamin D is transferred to the kidney where it is converted to the most active form, 1,25 dihydroxyvitamin D.
vitamin D review vitamin D

The active 1,25-dihydroxyvitamin D will increase calcium absorption by the intestines which increases our calcium reserves
vitamin D balance vitamin D vitamin D deficiency vitamin D metabolism and deficiency vitamin D effects

 

Vitamin D (1,25-dihydroxyvitamin D) has multiple roles in the body as shown above. There are over 300 different binding sites for Vitamin D throughout the human genome with receptors present in all human tissues.  The parathyroid glans in the neck secrete PTH to activate and regulate vitamin D.

  • Risk factors for vitamin D deficiency include age>65, breastfeeding mothers, insufficient sunlight exposure, certain medications (anticonvulsants, steroids, others), obesity, physical inactivity, liver and kidney disease, and dark pigmented skin. Vitamin D deficiency was historically associated with rickets ( a bone disease)
    Insane Medicine - rickets due to vitamin D deficiency
    Insane Medicine – rickets due to vitamin D deficiency.

    Of course rickets is rare in the U.S. due to fortified foods.

  • Studies are clear that vitamin D is important for health and prevention. There is an inverse association of 25-hydroxyvitamin D serum levels with risk of death due to cardiovascular disease and cancer. In other words, low vitamin D  levels in the body are associated with higher cardiac events and higher risk of cancer!!
  • Supplementation with vitamin D3 reduces overall mortality in older adults!
  • Vitamin D deficiency is based on a blood level of less than 20 ng/mL of 25-hydroxy vitamin D. It appears that correcting vitamin D levels may be on par with health risks such as smoking, alcohol consumption, and physical inactivity!
  • Based on calculations from one study, 12.8% of all deaths in the U.S. can be attributed to vitamin D deficiency. So for every 10 ng/ml decline in serum vitamin D, there appears to be a 16% increase in all cause mortality.  Supplementing with vitamin D3 decreased all cause mortality by 11%. There appears to be no benefit or protection  by supplementing with vitamin D2. Vitamin D2 is less potent and active than vitamin D3. It may be that calcium is needed to be used with vitamin D2 to be effective.
  • You can obtain enough vitamin D by exposure to sunlight (UVB) for 15 minutes a day if you are light skinned. Dark skin requires up to an hour of exposure to create enough daily vitamin D. Our body produces vitamin D in the skin and does so at higher levels in the summer time. Obviously, in the winter time, we are at risk of deficiency due to less skin exposure. Sun block will prevent UVB from reaching our skin and therefore will prevent the skin from creating vitamin D.
  • Vitamin D toxicity (levels greater than 150 ng/ml) result from high intake of vitamin D (greater than 10,000 units/day)
  • The bottom line: Get your 600-800 IU of vitamin D3 every day. Vitamin D3 is the best form of vitamin D. Boosting your vitamin D levels can decrease your cardiac and cancer risks!
  • http://www.vitamincouncil.org/   <–Vitamin D information!
  • Chowdury R, et al Vitamin D and risk of cause of specific death. BMJ 2014;348:g1903.doi: 10.1136/bmj.g1903