Tag Archives: gut biome

Insane Medicine – Inflammation as a cause of psychiatric conditions!

 

 

 

 

Clustering of Depression and Inflammation in Adolescents Previously Exposed to Childhood Adversity

http://www.sobp.org/files/public/BPS%20Press%20Release_Miller%20and%20Cole_FINAL.pdf   <<< Childhood Adversity Increases Risk for Depression and Chronic Inflammation

Insane Medicine – Akkermansia muciniphila and the Gut biome

  • The bacteria in your gut create a huge ecosystem or biome that has major effects on your overall health. More and more studies are demonstrating this, including the one below.
  • The gut microbiota diversity and function plays a role in the development of obesity and metabolic ailments.
  • Akkermansia muciniphila is a mucin-degrading bacteria found in the mucus layer of the intestine that has been found to help improve your metabolic status by increasing insulin sensitivity and glucose regulation.
  • Obese individuals and those with Type 2 diabetes differ from leaner individuals in the constitution of their gut micobiome and the microbial gene richness. It has been found in mice that higher levels of  mucin-degrading bacteria (Akkermansia muciniphila) are inversely associated with body fat and glucose intolerance. In other words, these bacteria help improve glucose metabolism and improve overall metabolic health.
  • The article below demonstrated that Akkermansia muciniphila, when increased in the gut, resulted in healthier metabolic status in obese people. This was accomplished by caloric restriction, which then resulted in increased microbial gene richness ( a good thing) and improved glucose homeostasis and blood lipids. Following a FODMAP diet also increased Akkermansia muciniphila in the gut.
  • The higher the Akkermansia muciniphila bacteria levels are in the gut, it seems that you will have better glucose metabolism, better waist-to-hip ratios, lower fasting glucose levels, better triglyceride levels,  and better fat distribution.
  • Increasing amounts of fat in the form of fat hypertrophy is a proinflammatory condition and is associated with bad cardiometabolic risk. This inflammatory risk is measured through insulin levels, interleukin-6, lipopolysaccharide levels, and C reactive protein levels in the blood stream. Caloric restriction leads to increased Akkermansia muciniphila and other healthy bacteria, which increases the overall microbial gene richness. These bacteria lower the inflammatory markers through their metabolic activity. This results in better metabolic outcomes.
  • How does this all occur? Akkermansia muciniphila ferments waste products into other items that other beneficial bacteria species can feed on. Short chained fatty acids are one of those items as well as acetate, which becomes an anorectant when absorbed in the body. In other words, you eat less.
  • The key here is that the gut biome plays a tremendous role in our overall health, and caloric restriction results in a  boosting of the healthy richness of our gut biome, which is probably a key part of overall health!

KEY study in GUT :  http://gut.bmj.com/content/early/2015/05/22/gutjnl-2014-308778.full.pdf+html

Akkermansia

 

 

 

http://www.gutmicrobiotaforhealth.com/akkermansia-as-a-target-for-obesity-authors-explained-1496

 

http://www.biotanutrition.com/2015/01/17/akkermansia-muciniphila-a-biomarker-of-healthy-gut/

 

Dao M, Everard A, et al. Akkermansia muciniphilaand improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut.2015. 

Gut Bacteria and Food Allergies:

  • Gut bacteria also seem to play an integral role in other aspects of our health including food allergies. The presence of Clostridia in our gut appears to be protective against food allergies by causing the release of Interleukin-22 from gut cells, thereby decreasing permeability of the gut to allergens, which cause allergic reaction. Without gut permeability, the antigens cannot create an allergic immune response. Food allergies have been increasing in recent times due  to modern dietary and hygienic practices, which disturb our natural gut biome.High fat diets, antibiotics,  and formula feeding have all affected our gut bacteria, some of which protect us against food allergies. In a study, it was shown that germ-free mice and mice treated with antibiotics both reacted to peanuts, however, when clostridia was introduced, the reaction went away! This demonstrates how Clostridia decreases food allergies.  The study, “Commensal bacteria protect against food allergen sensitization,” was the source of this information.
  • Clostridia protects against Food Allergies