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Abstract 

Systematic reviews (SRs) provide high quality evidence for clinical practice, but the article screening process is time 
and labor intensive. As SRs aim to identify relevant articles with a specific scope, we propose that a pre-defined 
article relationship, using similarity metrics, could accelerate this process. In this study, we established the article 
relationship using MEDLINE element similarities and visualized the article network with the Force Atlas layout. We 
also analyzed the article networks with graph diameter, closeness centrality, and module classes. The results 
revealed the distribution of articles and found that included articles tended to aggregate together in some module 
classes, providing further evidence of the existence of strong relationships among included articles. This approach 
can be utilized to facilitate the articles selection process through early identification of these dominant module 
classes. We are optimistic that the use of article network visualization can help better SR work prioritization. 

Introduction 

Systematic reviews (SR) provide a summary of evidence from high quality studies for a specific research question. 
They are regularly used in health care1-3 and for health policy making4. Evidence-based Medicine (EBM) relies 
heavily on the use of synthesized, up-to-date research evidence to make decisions. SRs are considered the highest 
quality source of evidence for EBM5.  

SR is commonly conducted by domain experts who are able to draft SR scopes, retrieve relevant citations, assess 
study quality, and synthesize evidence. Expert researchers first identify the SR scope and research questions, and 
then generate search strategies to explore related databases (e.g. MEDLINE). The search result is a list of citations, 
which are usually organized in reference management software (e.g. Endnote, Ref-Works). Before synthesizing 
relevant evidences, expert researchers need to classify articles based on the title and abstract. Then through the 
triage (or article selection) process, included articles will proceed to the full-text level6. In most SRs, expert 
researchers include only 2% to 30% of citations at the title and abstract level triage, and 1.6% to 27% gets to be 
included at the full-text level. In other words, expert researchers spend most of their effort excluding non-relevant or 
low quality studies. As the classification of articles is one of the most resource and time intensive steps, such 
workload and resource challenges can limit the tractability of an individual review, the ability to fund a review, and 
also the ability to respond to new evidence that may require an update to an existing review. To accelerate this 
process, several machine learning (ML) approaches (i.e. Naïve Bayes and Support Vector Machine)6-10 were 
proposed to facilitate and enhance the title and abstract level triage, abstracts screening11

As SRs aim to identify, appraise, select and synthesize high quality research evidence relevant to the research 
questions with a well-designed SR scope, we propose a new approach to pre-define the article relationship with 
similarity metrics in SR reports. The similarity metric is calculated using several MEDLINE elements12, such as title, 
abstract, MeSH, author, and publication type. We hypothesized that relevant (or included) articles should be more 
similar to each other than to the excluded ones. We could illustrate such an article relationship as an article network. 
Each article represents as a node and the relationship (similarity) between two articles represents as an edge 
connecting them. We hypothesize that with article network visualization, we could detect groups or clusters in the 
article network, especially for relevant (included) articles in a SR report. 

Through our research, we have demonstrated the visualization of article relationships using similarity metrics, and 
discovered community structures for article networks using 20 completed SR reports. Communities are densely 
connected groups of vertices, with only sparser connections between groups13-15. Communities reveal a non-trivial 
internal organization of the network, and allow people to infer special relationships among nodes. Communities 
have been shown to have significant real-world meaning13. 

We visualized article networks using a force-directed graph algorithm, which is commonly used for generating 
network graph where pair-wise geometric distances between the drawn vertices match graph theoretic pairwise 
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distances. Because of the SR article screening process, articles can be classified into three categories: excluded, 
half-included (articles included at the title/abstract level, but excluded at the full-text level) and included (articles 
included at both the title/abstract level and the full-text level). We evaluated the distributions of articles from these 
three categories (excluded, half-included, and included) using graph diameter, closeness centrality, and module 
classes (communities). Our research questions included: (1) do included articles tend to aggregate together? (2) 
with a community detection algorithm, do included articles cluster in the same communities (module classes)?  

Methods

We used 20 completed SRs: 15 SR reports 
were produced by the Drug Effectiveness 
Review Project team (DERP; 
www.ohsu.edu/drugeffectiveness), the data 
was made publicly available from Cohen6,16, 
and 5 SR reports17-21 were produced by the 
Cochrane Collaboration22. These 20 SRs 
were completed by experienced and 
knowledgeable human expert researchers,
with inclusion and exclusion decisions made 
by at least two expert researchers. Table 1 
shows the number and percentage of articles 
included at 1) abstract level decision and 2) 
full-text level decision. For instance, the 
review for ACE Inhibitors has a total of 
2544 citations. Based on the abstracts, 183 
(7.19%) were included; after full-text 
reading, 41 (1.61%) were included in the 
ACE Inhibitor SR report. The final inclusion 
rates range from 0.55% to 27.04%.  

Please note that for SRs from DERP16 (the 
first 15 SRs in Table 1), full references in 
MEDLINE format were downloaded using 
explicit PubMed Identifiers (PMID). For
SRs from Cochrane library (The last 5 SRs in Table 1), references in MEDLINE format were retrieved using the 
established search strategy on PubMed, references from other databases (i.e. EMBASE/Ovid) were not used. 

Again, based on the SR article screening process, articles were classified into three categories: excluded, 
half-included (articles included at the title/abstract level, but excluded at the full-text level) and included (articles 
included at both the title/abstract level and the full-text level). 

MEDLINE Elements 

In order to establish the relationship among articles, we used MEDLINE elements to create the similarity metrics. 
MEDLINE elements are the fields in the MEDLINE format, that document the major pieces of information of a 
publication (article)23. The MEDLINE display format is used in PubMed MEDLINE records. As the most 
informative elements, title (TI), abstract (AB) and MeSH (MH) elements are widely used in related work to build 
feature spaces for ML algorithms. Publication type (PT) is also selected by some studies10,24 as it may be a key 
factor for inclusion or exclusion decisions. In our preliminary work, we found that author information also had some 
predictive value in the article selection process. Therefore, in this study, we used TI, AB, MH, PT and author (AU) 
element in our experiments.   

Similarity Score 

We calculated the similarity using Cosine similarity25. Cosine similarity is widely applied to text mining and 
measures the cosine of the angle between a pair of vectors. It is a common and efficient measure for text 
comparison, especially for large datasets26,27. Cosine similarity reflects the degree of similarity based on the 
presence and frequency of words or terms in each text. For every pair of AUs, PTs and MHs, we simply compared 

Table 1. Twenty 

  
Total Abstract 

N (%) 
Full-text 
N (%) 

ACE Inhibitors16 2544 183 (7.19%) 41 (1.61%) 
ADHD16 851 84 (9.87%) 20 (2.35%) 
Antihistamines16 310 92 (29.68%) 16 (5.16%) 
Atypical Antipsychotics16 1120 363 (32.41%) 146 (13.04%) 
Beta Blockers16 2072 302 (14.58%) 42 (2.03%) 
Calcium Channel Blockers16 1218 279 (22.91%) 100 (8.21%) 
Estrogens16 368 80 (21.74%) 80 (21.74%) 
NSAIDS16 393 88 (22.39%) 41 (10.43%) 
Opioids16 1915 48 (2.51%) 15 (0.78%) 
Oral Hypoglycemics16 503 139 (27.63%) 136 (27.04%) 
Proton Pump Inhibitors16 1333 238 (17.85%) 51 (3.83%) 
Skeletal Muscle Relaxants16 1643 34 (2.07%) 9 (0.55%) 
Statins16 3465 173 (4.99%) 85 (2.45%) 
Triptans16 671 218 (32.49%) 24 (3.58%) 
Urinary Incontinence16 327 78 (23.85%) 40 (12.23%) 
Antibiotic17 412 74 (17.96%) 10 (2.43%) 
Antineoplastic18 1294 N/A N/A 19 (1.47%) 
Antiretrovirals19 749 N/A N/A 38 (5.07%) 
Hearing Loss20 467 13 (2.78%) 3 (0.64%) 
Leukaemia21 328 11 (3.35%) 7 (2.13%) 
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them by exact string matching, because a minor difference may completely alter the outcome. For example, even if 

calculate the similarity between two TIs and between two ABs, we pre-processed TIs and ABs by removing some 
common words (such as "the", "is", "are", etc.) that appear frequently in text, stemming each word by the classic 
Porter Stemmer algorithm28. This approach, named alphabetic features, also has been verified to be an effective 
method to represent an article29. The resulting similarity score ranges from 0 to 1 for each element, where 0 indicates 
independence and 1 means exactly the same. In summary, the similarity score is the equally weighted sum of the 
MEDLINE element(s) similarity, ranging from 0 to 5.  

Network Visualization 

Force-directed graph drawing algorithms assign forces among the set of edges and the set of nodes of a graph 
drawing. Spring-like attractive forces are typically used to attract pairs of endpoints of the graph's edges towards 
each other, while simultaneously electrical repulsive force are used to separate each pair of nodes. In balanced 
states, the edges tend to have uniform length, and nodes that are not connected by an edge tend to be drawn further 
apart. Graphs drawn with these algorithms tend to be aesthetically pleasing, exhibit symmetries, and tend to produce 
crossing-free layouts for planar graphs30,31.

We used Force Atlas layout32 to visualize article networks. In this graphic layout, each article was represented as a 
node and the edge connecting a pair of nodes had an edge weight, which was the similarity score of any paired 

articles. The initial article network was a complete network with  edges. Large complete networks are usually 
complex and unreadable. To provide a more readable network, we filtered edges with lower similarity scores (in this 
study, the threshold was 1.0). After the filtering, the largest connected network was generated to represent the 
relationships among most articles. In the Force Atlas algorithm model, the pair-wise geometric distances between 
the drawn vertices match the graph theoretic pairwise distances. In our results, similar nodes (articles) tended to
aggregate together after implementing the algorithm. Adjacent nodes represented articles with more similarities.

Evaluation Measures 

Graph Diameter and Closeness Centrality 

To mathematically represent the distribution of articles in the force atlas layout and then topologically study the 
aggregation/clustering of the included articles, we took graph diameter and closeness centrality as the evaluation 
measures.  

In connected graphs, there is a natural distance metric between all pairs of nodes, defined by the length of 
their shortest paths. Graph diameter is the length of the shortest path between the most distanced nodes. In other 
words, a graph's diameter is the largest number of vertices needed to travel from one vertex to another when paths 
which backtrack, detour, or loop are excluded from consideration33. A disconnected graph has infinite diameter. As 
the graph diameter is the maximum eccentricity of any vertex in the graph, it is widely used to measure the topology 
and concentration/centralization of a graph. A more concentrated graph comes with a smaller diameter. In this study, 
we examined the graph diameter of the largest connected network as well as the sub-graphs from the subsets of 
articles (included, half-included, and excluded).

Closeness centrality measures the farness from one node to all other nodes. The more central a node, the lower its 
total distance to all other nodes. Closeness can be considered as a measure of how long it will take to spread 
information from a node to all other nodes sequentially34,35. In our study, each node had a closeness centrality value. 
We used the distribution of closeness centrality as a measure to evaluate the network centralization. 

Modularity 

Modularity (community detection) is a measure of network structure. It was designed to measure the strength of 
division of a network into modules. Networks with high modularity have dense connections between the nodes 
within modules but sparse connections between nodes in different modules. Although a diversity of community 
detection algorithms have been proposed, the quality of community detection is usually measured by modularity and 
also some benchmark graphs.   

We used modularity to examine resulted communities (also called module classes) in article networks. In this study, 
the implemented community detection algorithm was a modularity optimization based heuristic method for fast 
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uncovering of communities in large networks. It was first published in Blondel 200836. This algorithm (also called 
Louvain method36) has several advantages, such as easy implementation, fast computation speed, and the capability 
to handle large and weighted networks.36 More importantly, comparing to other methods14,36,
has demonstrated to provide higher quality results for community detection. 

While working on several commonly used test-case networks with size ranges from 34 to 118 million
algorithm performs the best in modularity and efficiency while compared to three other algorithms37-39. In addition, 
this algorithm has also been successfully tested on the commonly applied Girvan and Newman (GN) benchmarks15 

and Lancichinetti and Fortunato and Radicchi (LFR) benchmarks40 is 
among the best when considering more than 10 popular community detection algorithms, including Rosvall 200841

15,38. also been applied to some popular social networks with millions 
of nodes like LinkedIn and Twitter42,43. 
examine the article networks in the SR reports.

Networks Implementation in Gephi  

Gephi44 is an open source software for graph and network analysis. It provides an interactive visualization and 
exploration platform for all kinds of networks and complex systems, dynamic and hierarchical graphs. It supports 

 as the modularity function. We used Gephi version 0.8.2 to examine our article networks. There 
are three parameters for this modularity function, including resolution, randomization, and weight. We used the 
original modularity function in Blondel esolution=1.0

r . This is also 
for iteration rather than an unnecessarily fixed order. Although different runs might bring slightly different results,
the differences are trivial and the overall structure remains the same. In addition, our article networks used article 
similarities as edge weights, so the was applied. 

Result

We examined 20 SR reports, evaluated their graph diameter, closeness centrality, and modularity, and visualized 
article networks using Force Atlas layout. To provide a readable article network visualization, edges with a weight 
less than 1.0 were filtered. After filtering, the largest connected network was generated to represent the relationships 
among most articles, averaging 92.07% of all articles. 

To illustrate the article network graph, we used ADHD report as an example to demonstrate the graphical topology 
and corresponding evaluation measures. Figure 1 shows the article network graphs for ADHD report. The ADHD 
report had a total of 851 articles; among which, 84 articles were included at the title/abstract level and 20 articles 
were included at the full-text level. In Figure 1, nodes were colored by inclusion/exclusion classes. Therefore, 20
nodes (included articles) were labeled in green, 64 nodes (half-included articles) were labeled in yellow, and 767 
nodes (excluded articles) were labeled in red. To examine the article distribution, we measured the graph diameter of 
the largest connected network, which was 10; the graph diameter of the sub-network for included articles (green 
nodes) was 2; the graph diameter of the sub-network for half-included articles (yellow) was 4; and the graph 
diameter of the sub-network for excluded articles (red) was 9. The graph diameter demonstrated that included 
articles were similar to each other. 

The distribution of closeness centrality for the largest connected network and sub-networks are shown in Figure 2. 
The closeness centrality of the largest connected network ranges from 1 to 7 (Figure 2a); but the closeness centrality 
of the sub-network for included articles, ranges from 1 to 2 (Figure 2b). The higher the closeness centrality score is, 
the more distance the node is to other nodes (less similar). Only if a node was isolated because of the filtering 
process (edges weighted <1 were eliminated), the closeness centrality score is 0.  

In summary, the sub-network of included articles had a smaller graph diameter and relatively smaller closeness 
centrality values than the largest connected network. We can conclude that included articles tend to have strong 
relationships (high similarities in MEDLINE elements). Similarly, the sub-network of the included articles also had 
a smaller graph diameter and closeness centrality values comparing to the sub-network of the half-included articles. 
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Figure 1. Sample article network graphs from ADHD report. Nodes colored by inclusion/exclusion classes (green= 
included articles; yellow= half-included articles; red= excluded articles. 

Figure 2. The distribution of closeness centrality for ADHD report 

Vertical axis - Closeness centrality 
Horizontal axis - Index of articles�
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In Figure 3, it shows the same network graph as Figure 1, but with a different coloring scheme. Here, nodes are 
nd. Eight out of 

73 modules contain more than 17 nodes, which is 2% of all articles in the ADHD report. The rest of 65 modules 
were considered minor communities with only a small amount of nodes or even one single node inside. The top 
three modules, which contain 31.02%, 18.21% and 17.04% of all articles, were colored in red, green, and yellow (in 
Figure 3) respectively. With this partition, we observed that 18 out of 20 included articles tended to aggregate in the 
green module class, with the exception of two articles. In other words, the green module class in Figure 3 covers 90% 
of included articles. The included articles in this green module class (18/155=11.61%), are much higher than those 
in the entire network (20/851=2.35%). The findings again confirmed our hypothesis that included articles tend to 
cluster together because of their high similarities to each other. With this scenario, if the article screening process 
can begin with this community, we could rapidly identify 90% (18 out of 20) relevant articles. 

Figure 3. Sample article network graphs from ADHD report. Nodes colored by module classes. A total of 73 
module classes were found.  

Graph diameter and closeness centrality 

To evaluate the graph centralization of the sub-network for included articles, we calculated its graph diameter and 
closeness centrality range and compared them with the largest connected network (Table 2). Because Skeletal 
Muscle Relaxants report has the graph diameter of 1, which is not meaningful for calculation, it was not included in 
the following analysis due to its fracture network. For the remaining 19 SR reports, the average value of largest 

was 8.26 (SD = 1.76), while the average graph diameter value of the sub-network for 
included articles was only 3.84 (SD = 1.54). The results show that the graph diameter of the sub-network of included 
articles was significantly smaller than that of the largest connected network (paired-t test, p<0.001). And for the 
closeness centrality range of the largest connected network, the largest one was 1~9 while the smallest one was 1~4. 
The largest closeness centrality range of the sub-network for included articles was 1~5 while the smallest one was 
only 1~2. 

In summary, the graph diameter of the sub-network for included articles was smaller than the graph diameter of the 
largest connected network. More than half of the SR reports even have less than a half size of the graph diameter. 
Besides, the closeness centrality range also shows a smaller value and tighter distribution in the sub-network of 
included articles comparing to the largest connected network, (1~3 vs. 1~6). The results confirmed that included 
articles tend to aggregate into a few small areas, and these generate  93.75% included articles 
in average from 19 SR reports in our study. 
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Module Classes 

Table 3 shows modularity results on module classes 
after the implementation of modularity function 
(community detection function) for the 20 SRs. We
used the number of modules (M), the number of 
modules with included articles (Mi), and the number 
of dominant modules with more than 10% included 
articles (DMi). We also reported the top two modules,
which contain most included articles. 

Although a large number of modules are detected for 
the largest connected network (average M = 86), 
included articles were only found in a few modules 
(average Mi = 4), and even less were classified into 
the dominant modules (average DMi = 2). This 
implies that included articles have strong similarity 
which tends to cluster in the same module classes. 
Moreover, the number of included articles found in 
Module1 (the top module for each report) provides 
additional aggregation evidence. In average, Module1 
covers 25.5% articles overall, but 67.81% included 
articles. With Module1 and Module2 together, they 
total cover 89.03% (67.81%+21.24%=89.03%) 
included articles. Due to the space limitation, we only 
report the top two modules in Table 3. However, other 
modules except dominant modules contain very few 
included articles. In many cases, there was only one 
included article in a module. 

Table 3. Modularity and detected module classes 
Modularity Module1 Module2 

M Mi DMi articles covered included articles 
covered 

articles covered included articles 
covered

# %a # %b # %a # %b

ACE Inhibitors 72 2 1 707 27.97% 40 97.56% 796 31.29% 1 2.44% 
ADHD 73 3 1 159 18.68% 18 90% 50 5.88% 1 5%
Antihistamines 43 4 3 83 26.77% 9 56.25% 74 23.87% 3 18.75% 
Atypical Antipsychotics 83 8 4 187 16.7% 50 34.25% 200 17.86% 45 30.82% 
Beta Blockers 89 4 2 400 19.26% 26 61.90% 476 22.97% 12 28.57% 
Calcium Channel Blockers 68 5 3 274 22.5% 36 36% 333 27.34% 32 32%
Estrogens 42 6 3 75 20.38% 34 42.5% 66 17.93% 24 30%
NSAIDS 44 3 2 78 19.85% 32 78.05% 42 10.69% 7 17.07% 
Opioids 90 3 2 298 15.56% 11 73.33% 592 30.91% 3 20%
Oral Hypoglycemics 31 7 3 161 32.01% 66 48.53% 146 29.03% 33 24.26% 
Proton Pump Inhibitors 51 6 2 449 33.68% 37 72.55% 405 30.38% 7 13.73% 
Skeletal Muscle Relaxants 322 3 2 826 50.27% 6 66.67% 184 11.20% 2 22.22% 
Statins 191 4 2 1384 39.95% 67 78.82% 1160 33.49% 14 16.47% 
Triptans 43 2 2 205 30.55% 17 70.83% 183 27.27% 7 29.17% 
Urinary Incontinence 57 7 1 67 20.49% 30 75% 18 5.5% 3 7.5% 
Antibiotic 25 3 3 45 10.92% 6 60% 125 30.34% 3 30%
Antineoplastic 195 5 3 144 11.13% 9 47.37% 191 14.76% 4 21.05% 

Table 2. Graph diameter and closeness centrality
Largest 

connected 
network 

Sub-network of 
included articles 

GD CCR GD CCR
ACE Inhibitors 7 1~5 3 1~3

ADHD 10 1~7 2 1~2

Antihistamines 8 1~6 3 1~3

Atypical Antipsychotics 8 1~6 7 1~5

Beta Blockers 8 1~6 4 1~4

Calcium Channel Blockers 8 1~6 7 1~5

Estrogens 7 1~5 6 1~4

NSAIDS 11 1~9 3 1~3

Opioids 7 1~5 3 1~3

Oral Hypoglycemics 5 1~4 5 1~4

Proton Pump Inhibitors 8 1~7 3 1~3

Skeletal Muscle Relaxants 13 1~9 1a 1~1

Statins 9 1~6 4 1~4

Triptans 10 1~7 5 1~4

Urinary Incontinence 8 1~6 4 1~3

Antibiotic 6 1~5 3 1~3

Antineoplastic 9 1~7 4 1~3

Antiretrovirals 6 1~5 3 1~3

Hearing Loss 11 1~8 2 1~2

Leukemia 11 1~8 2 1~2

Average 8.26 1~6 3.84* 1~3
GD = Graph Diameter; CCR= Closeness Centrality Range. 
a = Fracture network, only 2 out of 9 nodes are connects. Therefore, the 
report was not included in the average value. 
* Significant smaller than the largest connected network (p<0.001)
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Table 3. Modularity and detected module classes 
Modularity Module1 Module2 

M Mi DMi articles covered included articles 
covered 

articles covered included articles 
covered

# %a # %b # %a # %b

Antiretrovirals* 13 1 1 331 44.19% 38 100% -- -- -- --
Hearing Loss 87 2 2 116 24.84% 2 66.67% 100 21.41% 1 33.33% 
Leukaemia* 92 1 1 80 24.39% 7 100% -- -- -- --
Average 86 4 2 303 25.50% 27 67.81% 286 21.78% 11 21.24%
M= number of modules; Mi= number of modules that contain included articles; DMi= number of dominant modules with 
more than 10% included articles; 
* The SR report has only one module that contains included articles. Therefore, there is no Module2.  
a = percentage of articles covered in the module; b = percentage of included articles covered in the module

Discussion 

The use of article network visualization for SR 

In this study, we used the visualization approach to demonstrate article relationships. While article networks bring a 
more intuitive view of article distribution, the use of graph measures also provides mathematical support for our 
hypotheses. The aggregation of included articles confirms the feasibility of utilizing article relationships (similarity) 
to facilitate the article selection process for SR. We believe the visualization approach can be a powerful tool in 
assisting SR researchers for article screening. Taking the ADHD report as an example (Figure 3), we can rapidly 
identify included articles if we start the article screening in the green module. 90% (18 out of 20) included articles 
could be found earlier before screening in other areas, thus significant workload would likely to be saved. 

The article network visualization can be applied to (1) identify multiple key communities when the topic of articles 
is diversified; (2) assign high priority to communities with relevant articles and screen articles from the closet 
neighbors; (3) assign low priority to communities that contain several known irrelevant articles to save unnecessary 
workload; (4) customize the network structure with different similarity calculation for edge weights that align to 
specific sub-aims of a SR scope, e.g. authorship, publication type, keywords; (5) provide potential knowledge 
discovery from unexpected module classes. Our future work has planned to develop such an article network 
visualization application to assist SR. 

The limitation of force-directed algorithm 

Although the basic force-directed approach performs well for small graphs, the results are poor for graphs with more 
than one or two thousands vertices. This is mainly resulted from the obstacles to scalability and resolution. To be 
specific, the minimum vertex separation tends to be very small for large graphs, which leads to unreadable drawings. 
In addition, the typical force-directed algorithms are considered to have a time complexity equivalent to O(n3), thus 
the running time could be very long for large graphs. Due to this limitation, the SRs we applied in our study had no 
more than 4000 articles. Algorithms and layouts like T-SNE45 which supports implicit structure and dimensionality 
reductions could be considered for larger SRs in future works. 

Future direction 

As most included articles exhibiting a tendency to aggregate to a specific graphic region, we demonstrated the 
existence of such dominant module classes that cover a high percentage of included articles. Screening articles 
within these module classes first will likely accelerate the speed of discovering relevant articles. For our future 
work, we plan to work on early identification of the dominant module classes by integrating SR expert researchers
knowledge on SR scopes and research questions. With the external information, we are able to generate virtual 
article(s) representing ideal articles for inclusion. Virtual article(s) are likely to be located in the dominant module 
classes in the article network. 

Conclusion 

We demonstrated visualizing article relationships for SR with MEDLINE similarity in force layout. We used 
measures: graph diameter, closeness centrality, and module classes from the perspective of graph theory, to evaluate 
the centrality and communities of generated article networks. The sub-networks of included articles have a
significantly smaller graph diameter than those of the largest connected network (3.84 vs. 8.26, p<0.001), and a 
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smaller distribution in closeness centrality (1~3 vs. 1~6). Although a large number of modules were detected for the 
largest connected network (n=86) after the implementation of modularity function, included articles only cluster into 
a few communities (n=4), and are found in even fewer dominant communities (n=2). More importantly, the top two 
modules covered 89.03% included articles. 

Since most included articles in our research cohort exhibited a tendency to aggregate to specific regions, early 
identifying and exploring of these regions will likely accelerate the discovery of relevant articles for a SR We 
conclude that while relevant articles in SRs share common features and strong relationships (similarities), the article 
similarity can be utilized to facilitate the article selection process thus shortening and facilitating the most labor 
intensive aspect of the SR. which is the most intensive job in SR. Besides, through the visualization of article 
networks, we demonstrated viewing article relationships in a more intuitive way. We also discovered other 
advantages of visualizing article networks that are infeasible from the common text comparison approach. For 
example, if there are multiple major aggregated regions in an article network, a branching of SR scopes may be 
needed. Integrating article network visualization as a decision support tool in the SR process will enable SR 
researchers to discover particular patterns or communities; thus accelerating the SR production. 
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