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Abstract Circadian clocks that comprise clock genes ex-
ist throughout the body and control daily physiological
events. The central clock that dominates activity rhythms
is entrained by light/dark cycles, whereas peripheral
clocks regulating local metabolic rhythms are determined
by feeding/fasting cycles. Nutrients reset peripheral circa-
dian clocks and the local clock genes control downstream
metabolic processes. Metabolic states also affect the
clockworks in feedback manners. Because the circadian
system organizes whole energy homeostasis, including
food intake, fat accumulation, and caloric expenditure,
the disruption of circadian clocks leads to metabolic dis-
orders. Recent findings show that time-restricted feeding
during the active phase amplifies circadian clocks and
improves metabolic disorders induced by a high-fat diet
without caloric reduction, whereas unusual/irregular food

intake induces various metabolic dysfunctions. Such evi-
dence from nutrition studies that consider circadian sys-
tem (chrononutrition) has rapidly accumulated. We review
molecular relationships between circadian clocks and nu-
trition as well as recent chrononutrition findings.
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Introduction

Life on earth proceeds with daily cyclic changes in cir-
cumstances. Plants conduct photosynthesis during the
daytime, and nocturnal animals forage for food at night.
Many living organisms have developed intrinsic 24-h
cycles called circadian clocks that enable the expression
of activities at appropriate times. The molecular mecha-
nisms of clocks have been investigated in detail since the
first clock mutant was isolated from fruit flies [1]. Several
clock genes are homologous from flies to mammals and
thus circadian clock systems in all vertebrates have the
same origin, whereas plants, fungi, and protists have
developed other circadian systems [2]. Regardless of the
molecular bases, transcriptional-translational feedback
loops play critical roles in the generation or maintenance
of circadian rhythms. The main feedback loop in mam-
mals comprises several core clock genes, including
Bmal1, Clock, Per1/2, and Cry1/2 [3]. In addition to
these, other clock genes or clock-controlled genes, such
as Rev-erbα/β, Rorα/β, Dbp, Dec1/2, CK1ε/δ, and
NPAS2 cooperate to sustain mammalian circadian clocks.
Genome-wide transcriptome and ChIP-seq analyses have
shown that clock genes control the transcription of thou-
sands of genes with chromatin remodeling [4–6]. Notably,
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posttranscriptional regulation plays a substantial role in
controlling circadian mRNA expression [4]. The circadian
control of transcribed genes leads to rhythmic physiolog-
ical events.

Light/dark cycles entrain the central clock in the suprachi-
asmatic nucleus (SCN) that is located in the hypothalamus
where it mainly dominates activity-related rhythms, such as
sleep/wake cycles, the autonomic nervous system, core body
temperature, and melatonin secretion. In contrast, feeding/
fasting cycles entrain peripheral clocks that are located inmost
tissues including even part of the brain [7•]. Peripheral clocks
dominate local physiological processes, including glucose and
lipid homeostasis, hormonal secretion, xenobiotics, the im-
mune response, and the digestion system [8]. As the central
clock organizes local clocks through neuronal and humoral
signals, desynchronization among clocks is believed to result
in the development of unpreferable conditions, such as meta-
bolic disorders, cancer, and psychiatric disorders [9].

Circadian clocks enable the anticipation of daily events,
conferring a considerable advantage for saving time and the
efficient use of energy. The central clock activates the sympa-
thetic nervous system and increases body temperature and
blood pressure ahead of the active phase, facilitating the start
of activities. Digestion/absorption systems also prepare before
breakfast based on the time of local clocks [7•, 10]. Because
colonic motility also is regulated by the local clocks, gastro-
intestinal symptoms are prevalent among shift workers and
time-zone travelers [11]. In addition to local physiological
events in tissues, some activity rhythms also are affected by
feeding. Scheduled feeding elicits food anticipatory activity
that is independent of light/dark cues and is perceived as food-
seeking behavior approximately 2 hours before feeding [7•,
12]. This activity rhythm persists in rodents with SCN lesions,
indicating that the central clock is not essential for food
anticipatory activity. Because food available timing can be
occasionally restricted in the wild, circadian anticipatory con-
trol of behavior and energy metabolism probably increases
food usage and energy efficiency. Indeed, many studies have
shown that circadian clocks intimately control energy metab-
olism [13]. Many genes associated with glucose and lipid
homeostasis, especially those encoding rate limiting enzymes
in various metabolic processes, are under circadian control.
Thus, mutations or deletions of clock genes lead to metabolic
disorders [14]. Mice with mutant Clock have attenuated feed-
ing rhythm, hyperphagic, and obesity as well as altered glu-
coneogenesis, insulin insensitivities, and lipid homeostasis
[15, 16]. Glucose and lipid homeostasis are similarly impaired
in Bmal1 knockout mice [17, 18], and altered lipid metabo-
lism, attenuated nocturnal food intake with total overeating,
and developing significant obesity on high-fat diet are report-
ed in Per2 knockout mice [19, 20]. A few studies have
suggested an association between genetic variance in clock
genes and metabolic risk in humans [14, 21•]. In addition, an

epigenetic state of clock genes might be associated with
obesity [22]. These genetic associations indicate mutual inter-
action among circadian clocks, metabolism, and nutrition.

Recently, a novel field between nutrition and circadian
clock system is referred as “chrononutrition” [7•, 10]
(Fig. 1). In this article, we review recent findings regarding
chrononutrition, food components that regulate circadian
clocks, and meal times that affect metabolic homeostasis.

Nutrients Reset Peripheral Circadian Clocks

Feeding time is a dominant factor in determining the
phase of peripheral circadian clocks. Time-restricted feed-
ing during the daytime for a week completely alters the
phase of the circadian expression of clock and clock-
controlled genes in the peripheral tissues of nocturnal
rodents, whereas the central clock that is dominated by
light/dark cycles is not affected [23–25]. The liver can
adapt to novel feeding times within approximately 3 days,
whereas the kidney, heart, pancreas, and lung take longer
[23, 24]. Because liver clocks are rapidly entrained by
feeding signals, many investigators have used the liver to
clarify the features and mechanisms of food entrainment.
It is revealed that the balance between food volume and
starvation intervals is an important factor to determine the
phase of the liver clock. Breakfast is usually the most
effective meal to determine the phase of the liver clock in
studies of mice that mimic human eating patterns, because
breakfast is consumed after the longest starvation during
the day [26]. Thus, late dinners or midnight snacks alter
the starvation period and remarkably alter the phase of
peripheral clocks [27]. The nutrients responsible for the
rapid phase-shift in the liver clock also were investigated
and revealed that a combination of carbohydrate and
protein is essential to reset liver clocks, whereas either
protein, sugar, or oil is insufficient [28]. Coincidently,
liver clocks can be reset by an intraperitoneal injection
of glucose combined with amino acids but not by either
alone [29]. As blood glucose uptake after nutrient intake
correlates with the amount of phase-shift in the liver when
protein is included in the food, rapidly digestible starches
with a high glycemic index powerfully entrain liver
clocks [30]. The molecular mechanisms underlying the
rapid phase-shift in the liver clock caused by nutrients
has gradually been elucidated. Thirty minutes of feeding
after a long interval rapidly induces the transient expres-
sion of Per2 and Dec1 genes and a shift in the phase of
the clock in rat livers [31]. Feeding after a fast increases
Per2 and decreases Per1 [32], increases Per2 and de-
creases Rev-erbα within 2 hours [33], and increases
Per1, Per2 and Dec1 while decreasing Rev-erbα within
1 hour in the mouse liver [29]. These findings indicate
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that nutrients containing glucose and amino acids induce
rapid changes in the expression of clock genes, especially
Per2 and Rev-erbα, resulting in a phase-shift. Because
Per2 induction and Rev-erbα reduction after food intake
is not induced in streptozotocin (STZ)-treated insulin-de-
ficient mice, insulin is a candidate anticipant that can reset
peripheral clocks by feeding cues [33]. Indeed, an injec-
tion of insulin elicits a rapid change in Per2 and Rev-erbα
expression and shifts the phase of liver clocks. Insulin
added to cultured rat hepatocytes also induces rapid ex-
pression of Per1, Per2, and Dec1 genes [34]. The induc-
tion of clock genes is partially blocked by PD98059
(MAPK inhibitor) or LY294002 (PI3K inhibitor), suggest-
ing that MAPK and PI3K are involved in resetting clocks
downstream of insulin signaling. In addition to the liver,
clock genes are rapidly induced by insulin injection in
insulin-sensitive tissues, such as muscle and adipose, but
not in insulin-insensitive tissues, such as the lung and
brain, suggesting that insulin is involved in rapid resetting
of the clock by nutrients in some peripheral tissues [34].
On the other hand, peripheral clocks, including the liver,
can be still phase-shifted by daytime restricted feeding for

several days even in STZ-treated insulin-deficient rats and
mice [35, 36]. Factors other than insulin must be involved
in the entrainment of peripheral clocks by nutrient cues
and body temperature and serum response factor have the
potential [10].

Food Factors Modulate Circadian Clocks

Feeding mice with a high-fat diet ad libitum under con-
stant darkness prolongs the period of circadian locomotor
rhythm within a few weeks [37]. Under normal light/dark
conditions, a high-fat diet attenuates the amplitude of day/
night feeding and clock gene expression rhythms in adi-
pose tissues and the liver. Other studies have shown that a
high-fat diet induces a phase-advance of liver clocks and
altered feeding rhythms [38••, 39]. These findings indi-
cate that a high-fat diet affects the central clock and/or
eating behavior. Unlikely to the high-fat diet, intake of a
ketogenic diet, which comprises high-fat with low-
carbohydrate contents, shortens circadian locomotor ac-
tivity rhythm under constant darkness and the expression

Fig. 1 Schematic representation of the circadian clock system and
chrononutrition. Light/dark cycles entrain the central clock in the supra-
chiasmatic nucleus (SCN) dominating activity rhythms, whereas feeding
cues determine the phase of peripheral clocks that dominate local meta-
bolic rhythms. Both nutrients and meal timing can affect the clock
system, thus “chrononutrition” has two aspects: 1) nutrients/food com-
ponents regulate the clock system, e.g., caffeine prolongs the period of
circadian clocks and the locomotor activity rhythm, and high-fat diets

alter the rhythms of lipogenesis, circulating lipids, locomotor activity, and
feeding behavior; 2) meal-timing affects output of the clock system, e.g.,
skipping breakfast and nocturnal eating increases risk of obesity, whereas
time-restricted feedings prevent metabolic disorders induced by high-fat
diets. Regular/time-restricted feedings synchronize and amplify the
rhythms of clock system, whereas irregular/unusual feedings cause
desynchronization and attenuate the rhythms, probably leading to meta-
bolic disorders
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rhythm of clock and clock-controlled genes are phase-
advanced in peripheral tissues under a normal light/
dark condition [40]. Interestingly, ketogenic diets were
designed to mimic the physiological response to star-
vation, and hypocaloric conditions induce a phase-
advance in circadian locomotor activity rhythms [41].
Free fatty acids that are increased by a ketogenic diet
in plasma might be key factors that affect clocks be-
cause the intake of bezafibrate, a PPARα agonist that
is activated by free fatty acids, induces a phase-
advance of locomotor activity rhythms and peripheral
clock gene expression rhythms under normal light/dark
conditions [42, 43]. Another recent study showed that
a high-fat diet causes a large-scale reorganization of
oscillation in transcripts and metabolites in the liver
[38••]. These effects are caused by both impaired
CLOCK:BMAL chromatin recruitment and the induc-
tion of de novo oscillation of PPARγ-mediated tran-
scriptional controls. Such reprograming of the circadian
clock systems by a high-fat diet is notably reversible
within a few weeks.

Several other food components also affect circadian
clocks. Caffeine contained in food and drinks prolongs
circadian locomotor rhythms in Drosophila and mice [44,
45]. The dose of caffeine required to affect circadian
rhythms is ~0.05 %, which is equivalent to the dose
contained in coffee. Indeed, the consumption of regular,
but not decaffeinated, coffee prolongs circadian activity
rhythm in mice under constant darkness [45]. Interesting-
ly, caffeine prolongs the circadian period even in cultured
cells and in mouse tissues and its analogue, theophylline,
l e ng t h en s c i r c ad i a n rhy t hms i n Neu ro spo ra ,
Chlamydomonas, Drosophila, and even in higher plants
[44, 46–48]. Caffeine/theophylline thus might affect a
fundamental part of the circadian system. A high-salt
diet also affects circadian gene expression in mice. Con-
sumption of a diet containing 4 % NaCl for more than
2 weeks induces phase-advances of clock and clock-
controlled genes in peripheral tissues, whereas locomotor
activity rhythms, including feeding and drinking behav-
iors are not affected [49]. This phase-advance effect might
be similar to the powerful entrainment of liver clocks by
rapidly digested starch [30], because a high-salt diet in-
creases the expression of glucose transporters in digestive
tissues and results in acute blood glucose uptake after
feeding [49]. A few investigators have reported that some
food components affect clock gene expression in vitro.
Resveratrol, a polyphenol found in red wine, resets clocks
and harmine, which is a harmala alkaloid found in many
plants extends the period of clocks in fibroblasts [50, 51].
These findings indicate that both central and peripheral
circadian clocks can be affected by consumed food
factors.

Energy State and Clocks

Several studies have shown that energy status affects circadian
clock systems. The intracellular NAD(H)+/NADP(H) ratio
that depends on the metabolic status of cells affects the ability
of CLOCK/NPAS2:BMAL1 transcription factors to bind
DNA [52]. Intracellular NAD+ concentrations are controlled
downstream of clock genes in a circadian manner through
Nampt, which is a gene encoding restriction enzymes for the
NAD+ synthetic pathway that shows circadian oscillation [53,
54]. The NAD+-dependent deacetylase Sirt1 modulates
CLOCK-mediated chromatin remodeling and PER2 protein
degradation in a circadian fashion [55–57]. Another NAD+-
dependent enzyme, PARP1, regulates BMAL/CLOCK inter-
action through the ADP-ribosylation of CLOCK protein [58].
These NAD+-dependent molecules control clocks in the feed-
back system. Thus, disrupting NAD+ oscillation alters behav-
ioral and metabolic circadian rhythms in mice [59]. Another
factor that connects cellular energy status with intracellular
clocks is AMPK, which senses AMP/ATP ratios and thus acts
as an intracellular energy sensor. The clock genes CK1ε and
CRY1 are phosphorylated by AMPK, and this process results
in the degradation of PER2 and CRY1, respectively [60, 61].
Other clock genes, Rev-erbα/β and Rorα/β are also critically
involved in energy homeostasis. Rev-erbα/β is activated by
heme, which reflects the cellular redox state [62], and re-
presses Bmal1 as well as hundreds of genes related to lipid
homeostasis [6, 63]. Rorα might function as a lipid sensor,
because it is activated by cholesterols and regulates expression
of several genes that are involved in lipid metabolism [64].
Other nuclear receptors, such as PPARs, are also important for
both lipid sensing and clock function as they are activated by
free fatty acids and interact with Per2, Sirt1, and PGC1α [9,
20, 65]. The activation of PPARα causes circadian behavioral
changes [42], and mice lacking PGC1α have altered circadian
activity and lipid metabolism [66]. Moreover, a recent study
revealed the circadian cooperation of PPARs because PPARγ-
dependent lipogenesis that is activated by nocturnal feeding in
mice promotes fatty acid use via a circulating lipid that acti-
vates PPARα in muscle [67••]. Interestingly, a high-fat diet
diminishes the rhythmic circulation of the lipid. The activity
of PPARs and lipid mediators might play important roles in
both circadian behavioral control and in lipid homeostasis.
These findings showed that circadian clocks control energy
metabolism and that energy status affects clocks as feedback
loops. Nutritional changes must affect the status of circadian
clocks as well as energy status.

Timing of Food Intake Affects Energy Metabolism

The mutual influences of circadian clocks and energy metab-
olism suggests that feeding time critically impacts
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metabolism. High-fat diets induce obesity and increase risk for
metabolic diseases. However, time-restricted feeding with a
high-fat diet without caloric reduction suppresses obesity and
metabolic diseases [68••, 69]. This remarkable effect of time-
restricted feeding is probably due to fine tuning of the circa-
dian clocks. Intake of a high-fat diet ad libitum attenuates the
amplitude of clocks, whereas time-restricted feeding restores
the amplitude.Much evidence supports the notion that feeding
time affects obesity and metabolic status. Mice gained more
weight when fed with a normal or a high-fat diet during 12-h
in the daytime than during 12-h in the night-time [70, 71].
Mice housed under a light/dim-light cycle increased food
intake ratios during the light phase gained weight and became
more glucose intolerant than mice under normal light/dark
cycles, despite equivalent total caloric intake and total daily
activities [72]. Similarly, adipocyte-specific deletion of the
Bmal1 gene increased the food intake ratio of the light phase
and body weight [73•]. Ablation of the adipocyte clock altered
the circulating concentration of polyunsaturated fatty acids in
the hypothalamus, resulting in a change of feeding behavior.
Moreover, rats fed with a butter-based, high-fat diet had an
increased ratio of eating during the light phase, overate, and
developed obesity [74]. These results indicate that diurnal
feeding causes weight-gain in nocturnal rodents. Not only
diurnal/nocturnal feeding but also breakfast/dinner timing
affects body weight and energy metabolism. Weight gain,
hyperinsulinemia, and hyperleptinemia were suppressed in
mice fed with a bigger breakfast and a smaller dinner com-
pared with mice fed ad libitum [75]. Early nocturnal fasting
increased lipogenesis and resulted in an increase of body
weight in mice [76], and late nocturnal fasting reduced body
weight gain in rats [77]. The timing of food intake also affects
body weight and the risk of obesity in humans [78, 79]. A
study of two isocaloric weight loss groups found greater
improvement of many metabolic markers, body weight,
fasting glucose, insulin, TG, OGTT, ghrelin, mean hunger
scores, and satiety scores in the group given a bigger breakfast
and a smaller dinner than vice versa [80•]. Another study
showed that early mealtimes significantly decreased TG and
LDL cholesterol levels in serum [81]. Moreover, several hu-
man epidemiological studies have suggested a correlation
between eating pattern and obesity. The frequency of break-
fast was inversely associated with weight gain in a cohort of
2,216 adolescents [82]. Similarly, skipping breakfast increases
the odds ratios for adult obesity, overweight children, and
visceral adiposity in overweight Latino youth [83–85]. In
addition to frequency, the glycemic index of breakfast might
affect control of appetite and blood sugar levels in both adults
and children [86]. Moreover, night eating syndrome charac-
terized by a time-delayed eating pattern is positively associat-
ed with BMI [87]. These findings indicate that late meals and
skipping breakfast leads to body weight gain and obesity in
humans as well as in experimental animals.

How Does Meal Timing Affect Metabolism?

Although the mechanisms underlying the effects of differ-
ential meal timing upon obesity remains obscure, some
evidence is quite suggestive. One aspect is that unusual
food timing causes overintake partly due to an insufficient
satiety function. As circadian clocks control the expression
of leptin that suppresses appetite [88], circadian misalign-
ment causes a reduction of serum leptin throughout the day
[89]. Indeed, a few studies have found that impaired feed-
ing rhythms result in increased total food intake [71, 74,
76]. It is noted that leptin levels are reduced and energy
intake is increased during short sleep durations in humans
[90], and some epidemiological studies have associated
sleep deprivation with energy intake and obesity [91].
Time-restricted feeding during the nonactive phase might
cause sleep deprivation and overeating. However, some
studies have shown that feeding time affects body weight
even under isocaloric conditions [68••, 76, 80•]. Altered
calorie expenditure might be another explanation for
changes in weight. Core body temperature is controlled by
circadian clocks [92], and a recent study has shown a
mechanism of circadian thermogenesis. Rev-erbα sup-
presses and generates the rhythmic expression of Ucp1,
which is an important factor in nonshivering thermogenesis
in brown adipose tissues, and rhythms of body and BAT
temperatures are attenuated in the Rev-erbα-knockout mice
[93]. The circadian control of body temperature suggests
that thermogenesis varies during the day. Indeed, diet-
induced thermogenesis (DIT) elicits circadian variations
in humans; DIT is highest in the morning, followed by the
afternoon and night [94]. Such circadian thermogenesis
could reasonably explain increases in the body mass of
persons who skip breakfast. Light conditions also affect
both thermogenesis and metabolism. Constant light impairs
thermogenesis against cold stimuli in squirrel monkeys
[95]. Four days of constant light increase food intake,
decreased energy expenditure, and resulted in an immedi-
ate weight gain in mice [96]. As constant light attenuates
rhythms of the central clock, disorganized feeding behav-
ior, sleep/wake cycles, and energy homeostasis, including
thermogenesis might result. In addition, a shift of light
conditions or feeding time affects metabolism, body tem-
perature, and body weight within a few days [24, 89].
These immedia te e f fec t s a re probab ly due to
desynchronization among internal clocks similar to jet
lag. Chronic jet lag, including shift-work, inevitably in-
creases risk for metabolic disorders [97–99]. Intriguingly,
intake of food in normal active-phase restores metabolic
abnormality in rodent models of shift-work [97, 100].
Disturbed systemic cooperation among clocks might be
the most critical factors in the impaired energy metabo-
lism induced by unusual feeding. One study of early
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nocturnal fasting in mice found that the amplitude of
lipogenic genes, such as Srebp-1c and Pparα was in-
creased, resulting in increased de novo lipogenesis in the
liver [76]. As mentioned above, circadian lipogenesis in
the liver is drastically reprogrammed by nutritional
change [38••], and cooperatively controls fat use in the
muscle via the circulating lipid [67••]. Unpredictable
feeding times might disturb the circadian harmonization
of metabolic processes beyond organs and finally disrupt
energy homeostasis (Fig. 1).

Conclusions

Circadian clocks in animals are tightly connected to ener-
gy homeostasis and are affected by feeding time as well
as food composition/components. Clocks control energy
metabolism and metabolic states influence clocks. The
prevalence of metabolic diseases has increased in many
countries where circadian behaviors, including meal
times, can be disrupted and individuals can be deprived
of sleep. Time-restricted feeding or a balanced breakfast
can powerfully entrain and thus amplify circadian clocks
in peripheral tissues, whereas feeding at unusual times or
with a high-fat diet attenuates these clocks. Light/dark
cues are also important to maintain cooperation between
circadian systems and energy homeostasis through the
central clock. Consideration of appropriate meal times is
one wise way to control metabolic diseases even without
caloric reduction. The consumption of beneficial food
components, such as polyphenols, unsaturated fatty acids,
and fiber, at suitable times would help to promote health
in the same way as medication is administered at specific
times in chronopharmacology. Not only the quality and
quantity but also timing is important for nutrition.
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