Practice Guidelines for the Perioperative Management of Patients with Obstructive Sleep Apnea

An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep Apnea

"Practice" guidelines are systematically developed recommendations that assist the practitioner and patient in making decisions about health care. These recommendations may be adopted, modified, or rejected according to clinical needs and constraints, and are not intended to replace local institutional policies. In addition, practice guidelines developed by the American Society of Anesthesiologists (ASA) are not intended as standards or absolute requirements, and their use cannot guarantee any specific outcome. Practice guidelines are subject to revision as warranted by the evolution of medical knowledge, technology, and practice. They provide basic recommendations that are supported by a synthesis and analysis of the current literature, expert and practitioner opinion, open-forum commentary, and clinical feasibility data.

Methodology

A. Definition of Obstructive Sleep Apnea

Obstructive sleep apnea (OSA) is a syndrome characterized by periodic, partial, or complete obstruction in the upper airway during sleep. This, in turn, causes repetitive arousal from sleep to restore airway patency, which may result in daytime hypersomnolence or other daytime manifestations of disrupted sleep as aggressive or distractible behavior in children. The airway obstruction may also cause episodic sleep-associated oxygen desaturation, episodic hypercarbia, and cardiovascular dysfunction. In the perioperative period, both pediatric and adult patients with OSA, even if asymptomatic, present special challenges that must be addressed to minimize the risk of perioperative morbidity or mortality.

This article is featured in “This Month in Anesthesiology,” page 1A. Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are available in both the HTML and PDF versions of this article. Links to the digital files are provided in the HTML text of this article on the Journal's Web site (www.anesthesiology.org). A complete bibliography used to develop these updated Guidelines, arranged alphabetically by author, is available as Supplemental Digital Content 1, http://links.lww.com/ALN/B6.

Submitted for publication October 16, 2013. Accepted for publication October 16, 2013. Approved by the ASA House of Delegates on October 16, 2013. Updated by the American Society of Anesthesiologists Committee on Standards and Practice Parameters and the Task Force on Perioperative Management of Obstructive Sleep Apnea: Jeffrey L. Apfelbaum, M.D. (Committee Chair); Robert A. Caplan, M.D., Seattle, Washington; Richard T. Connis, Ph.D., Woodinville, Washington; Charles J. Coté, M.D., Boston, Massachusetts; David G. Nickinovich, Ph.D., Bellevue, Washington; Denham S. Ward, M.D., Rochester, New York; Edward M. Weaver, M.D., M.P.H., Seattle, Washington; and Lawrence Ydens, M.D., Albuquerque, New Mexico.

Copyright © 2013, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins. Anesthesiology 2014; 120:268–86
Because procedures differ among laboratories, it is not possible to use specific values of indices such as the apnea-hypopnea index to define the severity of sleep apnea. Therefore, for the purposes of these Guidelines, patients will be stratified using the terms mild, moderate, and severe as defined by the laboratory where the sleep study was performed.

B. Purposes of the Guidelines
The purposes of these Guidelines are to improve the perioperative care and reduce the risk of adverse outcomes in patients with confirmed or suspected OSA who receive sedation, analgesia, or anesthesia for diagnostic or therapeutic procedures under the care of an anesthesiologist.

C. Focus
These Guidelines focus on the perioperative management of patients with confirmed or suspected OSA who may be at increased risk of perioperative morbidity and mortality because of potential difficulty in maintaining a patent airway. This population includes but is not limited to patients who have sleep apnea resulting from obesity, pregnancy, and other skeletal, cartilaginous, or soft tissue abnormalities causing upper airway obstruction. These Guidelines do not focus on patients with the following conditions: (1) pure central sleep apnea, (2) abnormalities of the upper or lower airway not associated with sleep apnea (e.g., deviated nasal septum), (3) daytime hypersomnolence from other causes, (4) patients younger than 1 yr, and (5) obesity in the absence of sleep apnea.

D. Application
These Guidelines apply to both inpatient and outpatient settings and to procedures performed in an operating room as well as in other locations where sedation or anesthesia is administered. They are directly applicable to care administered by anesthesiologists and individuals who deliver care under the medical direction or supervision of an anesthesiologist. They are also intended to serve as a resource for other physicians and patient care personnel who are involved in the care of these patients. In addition, these Guidelines may serve as a resource to provide an environment for safe patient care.

E. Task Force Members and Consultants
The original Guidelines were developed by an ASA-appointed Task Force of 12 members, consisting of anesthesiologists in both private and academic practices from various geographic areas of the United States, a bariatric surgeon, an otolaryngologist, and two methodologists from the ASA Committee on Standards and Practice Parameters.

The original Task Force developed the Guidelines by means of a six-step process. First, they reached consensus on the criteria for evidence of effective perioperative management of patients with OSA. Second, original published research studies from peer-reviewed journals relevant to the perioperative management of patients with OSA were evaluated. Third, the panel of expert consultants was asked to (1) participate in opinion surveys on the effectiveness of various perioperative management strategies for patients with OSA and (2) review and comment on a draft of the Guidelines developed by the Task Force. Fourth, the Task Force held open forums at two major national meetings to solicit input on its draft recommendations. National organizations representing most of the specialties whose members typically care for patients with OSA were invited to participate in the open forums. Fifth, the consultants were surveyed to assess their opinions on the feasibility and financial implications of implementing the Guidelines. Sixth, all available information was used to build consensus within the Task Force to finalize the Guidelines.

In 2012, the ASA Committee on Standards and Practice Parameters requested that the updated Guidelines published in 2006 be re-evaluated. This update consists of an evaluation of literature published since completion of the original Guidelines and an evaluation of new survey findings of expert consultants and ASA members. A summary of recommendations is found in appendix 1.

F. Availability and Strength of Evidence
Preparation of these updated Guidelines followed a rigorous methodological process. Evidence was obtained from two principal sources: scientific evidence and opinion-based evidence (appendix 2).

Scientific Evidence
Scientific evidence used in the development of these Guidelines is based on findings from literature published in peer-reviewed journals. Literature citations are obtained from PubMed and other healthcare databases, direct internet searches, task force members, liaisons with other organizations, and from hand searches of references located in reviewed articles.

Findings from the aggregated literature are reported in the text of the Guidelines by evidence category, level, and direction. Evidence categories refer specifically to the strength and quality of the research design of the studies. Category A evidence represents results obtained from randomized controlled trials (RCTs), and Category B evidence represents observational results obtained from nonrandomized study designs or RCTs without pertinent controls. When available, Category A evidence is given precedence over Category B evidence in the reporting of results. These evidence categories are further divided into evidence levels. Evidence levels refer specifically to the strength and quality of the summarized study findings (i.e., statistical findings, type of data, and the number of studies reporting/replicating the findings) within the two evidence categories. For this document, only the highest level of evidence is included in the summary report for each intervention, including a directional designation of benefit, harm, or equivocality for each outcome.

Category A
Randomized controlled trials report comparative findings between clinical interventions for specified outcomes.
Statistically significant ($P < 0.01$) outcomes are designated as either beneficial (B) or harmful (H) for the patient; statistically nonsignificant findings are designated as equivocal (E). Level 1: The literature contains a sufficient number of RCTs to conduct meta-analysis; and meta-analytic findings from these aggregated studies are reported as evidence. Level 2: The literature contains multiple RCTs, but the number of RCTs is not sufficient to conduct a viable meta-analysis for the purpose of these Guidelines. Findings from these RCTs are reported as evidence. Level 3: The literature contains a single RCT, and findings from this study are reported as evidence.

Category B
Observational studies or RCTs without pertinent comparison groups may permit inference of beneficial or harmful relationships among clinical interventions and outcomes. Inferred findings are given a directional designation of beneficial (B), harmful (H), or equivocal (E). For studies that report statistical findings, the threshold for significance is P value less than 0.01.

Level 1: The literature contains observational comparisons (e.g., cohort and case-control research designs) between clinical interventions for a specified outcome.

Level 2: The literature contains observational studies with associative statistics (e.g., relative risk, correlation, and sensitivity/specificity).

Level 3: The literature contains noncomparative observational studies with descriptive statistics (e.g., frequencies and percentages).

Level 4: The literature contains case reports.

Insufficient Evidence
The lack of sufficient scientific evidence in the literature may occur when the evidence is either unavailable (i.e., no pertinent studies found) or inadequate. Inadequate literature cannot be used to assess relationships among clinical interventions and outcomes, because such literature does not permit a clear interpretation of findings due to methodological concerns (e.g., confounding in study design or implementation) or does not meet the criteria for content as defined in the “Focus” of the Guidelines.

Opinion-based Evidence
All opinion-based evidence (e.g., survey data, open-forum testimony, internet-based comments, letters, and editorials) relevant to each topic was considered in the development of these updated Guidelines. However, only the findings obtained from formal surveys are reported.

Opinion surveys were developed for this update by the Task Force to address each clinical intervention identified in the document. Identical surveys were distributed to expert consultants and a random sample of ASA members.

Category A: Expert Opinion
Survey responses from Task Force-appointed expert consultants are reported in summary form in the text, with a complete listing of consultant survey responses reported in appendix 2.

Category B: Membership Opinion
Survey responses from active ASA members are reported in summary form in the text, with a complete listing of ASA member survey responses reported in appendix 2.

Category C: Informal Opinion
Open-forum testimony obtained during development of the original Guidelines, Internet-based comments, letters, and editorials are all informally evaluated and discussed during the formulation of Guideline recommendations. When warranted, the Task Force may add educational information or cautionary notes based on this information.

Guidelines
I. Preoperative Evaluation
Preoperative evaluation of a patient for potential identification of OSA includes (1) medical record review, (2) patient/family interview and screening protocol, and (3) physical examination.

Medical Record Review. The literature is insufficient to evaluate the efficacy of conducting a directed medical history or reviewing previous medical records to identify the presence of OSA. Observational studies comparing OSA with non-OSA patients report higher body mass index values for OSA patients, similarly, when obese patients are compared with nonobese patients, higher frequencies of OSA are reported (Category B1-H evidence). Comparative observational studies...
report other pertinent patient characteristics associated with OSA that may be available in medical records, such as hypertension,19–23 history of stroke,24,25 history of myocardial infarction,26 diabetes mellitus,27 or abnormal cephalometric measurements.27–33 \textit{(Category B1-I evidence).} Noncomparative observational studies and case reports indicate that certain congenital conditions \textit{(e.g., Down syndrome, acromegaly)}34–36 and disease states \textit{(e.g., neuromuscular disease, cerebral palsy)}37 may also be associated with OSA \textit{(Category B3-H evidence).}

Patient/Family Interview and Screening Protocol. The literature is insufficient to evaluate the efficacy of conducting a patient or family interview to identify the presence of OSA. Observational studies evaluating screening protocols or questionnaires to identify adult OSA patients report sensitivity values ranging from 36 to 86\%, specificity values ranging from 31 to 95\%, positive predictive values ranging from 72 to 96\%, and negative predictive values ranging from 30 to 82\%, based on apnea–hypopnea index or respiratory disturbance index scores of 5 or more \textit{(Category B2-B evidence)}.38–65

Physical Examination. The literature is insufficient to evaluate the efficacy of conducting a directed physical or airway examination to identify the presence of OSA. Comparative observational studies report differences in neck circumference,66–68 tongue size,69 and nasal and oropharyngeal airway structures69–71 when comparing OSA with non-OSA patients \textit{(Category B1-I evidence)}. Observational studies also report associations between tonsil size and apnea–hypopnea index or respiratory disturbance index scores in adult OSA patients \textit{(Category B2-H evidence)}.72–74

The consultants and ASA members strongly agree that anesthesiologists should work with surgeons to develop a protocol whereby patients in whom the possibility of OSA is suspected on clinical grounds are evaluated long enough before the day of surgery to allow preparation of a perioperative management plan. They also both strongly agree that preoperative evaluation should include (1) a comprehensive review of previous medical records (if available), (2) an interview with the patient and/or family, and (3) conducting a physical examination. The consultants and ASA members both agree that if any characteristics noted during the preoperative evaluation suggest that the patient has OSA, the anesthesiologist and surgeon should jointly decide whether to (1) manage the patient perioperatively based on clinical criteria alone or (2) obtain sleep studies, conduct a more extensive airway examination, and initiate indicated OSA treatment in advance of surgery. The consultants agree and the ASA members strongly agree that the patient and his or her family as well as the surgeon should be informed of the potential implications of OSA on the patient’s perioperative course.

Recommendations for Preoperative Evaluation

Anesthesiologists should work with surgeons to develop a protocol whereby patients in whom the possibility of OSA is suspected on clinical grounds are evaluated long enough before the day of surgery to allow preparation of a perioperative management plan. This evaluation may be initiated in a preanesthesia clinic (if available) or by direct consultation from the operating surgeon to the anesthesiologist. A preoperative evaluation should include a comprehensive review of previous medical records (if available), an interview with the patient and/or family, and conducting a physical examination. Medical records review should include (but not be limited to) checking for a history of airway difficulty with previous anesthetics, hypertension or other cardiovascular problems, and other congenital or acquired medical conditions.

Review of sleep studies is encouraged. The patient and family interview should include focused questions related to snoring, apneic episodes, frequent arousals during sleep (e.g., vocalization, shifting position, and extremity movements), morning headaches, and daytime somnolence.§ A physical examination should include an evaluation of the airway, nasopharyngeal characteristics, neck circumference, tonsil size, and tongue volume. If any characteristics noted during the preoperative evaluation suggest that the patient has OSA, the anesthesiologist and surgeon should jointly decide whether to (1) manage the patient perioperatively based on clinical criteria alone or (2) obtain sleep studies, conduct a more extensive airway examination, and initiate indicated OSA treatment in advance of surgery. If this evaluation does not occur until the day of surgery, the surgeon and anesthesiologist together may elect for presumptive management based on clinical criteria or a last-minute delay of surgery. For safety, clinical criteria (table 1) should be designed to have a high degree of sensitivity (despite the resulting low specificity), meaning that some patients may be treated more aggressively than would be necessary if a sleep study was available.

The severity of the patient’s OSA, the invasiveness of the diagnostic or therapeutic procedure, and the requirement for postoperative analgesics should be taken into account in determining whether a patient is at an increased perioperative risk from OSA. Finally, both the consultants and ASA members strongly agree that the patient and his or her family as well as the surgeon should be informed of the potential implications of OSA on the patient’s perioperative course.

II. Preoperative Determination of Inpatient versus Outpatient Management

The literature is insufficient to offer guidance regarding which patients with OSA can be safely managed on an inpatient \textit{versus} on an outpatient basis.

§ Screening protocols or questionnaires may be useful for indentifying these clinical characteristics.
The consultants and ASA members strongly agree that before patients at increased perioperative risk from OSA are scheduled to undergo surgery, a determination should be made regarding whether a surgical procedure is most appropriately performed on an inpatient or outpatient basis.

Recommendations for Preoperative Determination of Inpatient versus Outpatient Management

Before patients at increased perioperative risk from OSA are scheduled to undergo surgery, a determination should be made regarding whether a surgical procedure is most appropriately performed on an inpatient or outpatient basis. Factors to be considered in determining whether outpatient care is appropriate include (1) sleep apnea status, (2) anatomical and physiologic abnormalities, (3) status of coexisting diseases, (4) nature of surgery, (5) type of anesthesia, (6) need for postoperative opioids, (7) patient age, (8) adequacy of postdischarge observation, and (9) capabilities of the outpatient facility. The availability of emergency difficult airway equipment, respiratory care equipment, radiology facilities, clinical laboratory facilities, and a transfer agreement with an inpatient facility should be considered in making this determination.

III. Preoperative Preparation

Preoperative preparation is intended to improve or optimize an OSA patient’s perioperative physical status and includes (1) preoperative continuous positive airway pressure (CPAP) or noninvasive positive pressure ventilation (NIPPV), (2) preoperative use of mandibular advancement or oral appliances, and (3) preoperative weight loss.

CPAP or NIPPV. An observational study reports lower frequencies of serious postoperative complications (i.e., cardiac events, complications needing intensive care unit transfer or urgent respiratory support) when preoperative at-home CPAP is compared with no preoperative CPAP (Category B1-B evidence). The literature is insufficient to evaluate the impact of the preoperative use of NIPPV.

Mandibular Advancement or Oral Appliances. The literature is insufficient to evaluate the efficacy of preoperative mandibular advancement devices on perioperative outcomes.

Preoperative Weight Loss. There is insufficient literature to evaluate the efficacy of preoperative weight loss.

The consultants agree and the ASA members strongly agree that preoperative initiation of CPAP should be considered, particularly if OSA is severe. The ASA members agree and the consultants are equivocal that for patients who do not respond adequately to CPAP, NIPPV should be considered. In addition, the ASA members agree and the consultants are equivocal that the preoperative use of mandibular advancement devices or oral appliances and preoperative weight loss should be considered when feasible. Finally, both the consultants and ASA members agree that patients with known or suspected OSA may have difficult airways and therefore should be managed according to the “Practice Guidelines for Management of the Difficult Airway: An Updated Report.”

Recommendations for Preoperative Preparation

Preoperative initiation of CPAP should be considered, particularly if OSA is severe. For patients who do not respond adequately to CPAP, NIPPV should be considered. In addition, the preoperative use of mandibular advancement devices or oral appliances and preoperative weight loss should be considered when feasible. A patient who has had corrective airway surgery (e.g., uvulopalatopharyngoplasty, surgical mandibular advancement) should be assumed to remain at risk of OSA complications unless a normal sleep study has been obtained and symptoms have not returned. Patients with known or suspected OSA may have difficult airways and therefore should be managed according to the “Practice Guidelines for Management of the Difficult Airway: An Updated Report.”

IV. Intraoperative Management

Intraoperative concerns in patients at increased perioperative risk from OSA include (1) choice of anesthesia technique, (2) airway management, and (3) patient monitoring. The literature is insufficient to evaluate the effects of various anesthesia techniques as they specifically apply to patients with OSA. Similarly, the literature is insufficient to evaluate the impact of intraoperative airway management (e.g., awake extubation) or patient monitoring techniques as they specifically apply to patients with OSA.

The consultants and ASA members strongly agree that the potential for postoperative respiratory compromise should be considered in selecting intraoperative medications. They also strongly agree that for superficial procedures consider the use of local anesthesia or peripheral nerve blocks, with or without moderate sedation. The consultants and ASA members agree that, for patients previously treated with CPAP or an oral appliance, consider using these modalities during sedation.

The consultants and ASA members strongly agree that general anesthesia with a secure airway is preferable to deep sedation without a secure airway, particularly for procedures that may mechanically compromise the airway. The consultants and ASA members agree that major conduction anesthesia (spinal/epidural) should be considered for peripheral procedures. They both strongly agree that, unless there is a medical or surgical contraindication, patients at increased perioperative risk from OSA should be extubated while awake. They also both strongly agree that full reversal of neuromuscular block should be verified before extubation. Finally, the ASA members agree and the consultants strongly agree that when
possible, extubation and recovery should be carried out in the lateral, semiprone, or other nonsupine positions.

Recommendations for Intraoperative Management

Because of their propensity for airway collapse and sleep deprivation, patients at increased perioperative risk from OSA are especially susceptible to the respiratory depressant and airway effects of sedatives, opioids, and inhaled anesthetics; therefore, the potential for postoperative respiratory compromise should be considered in selecting intraoperative medications. For superficial procedures, consider the use of local anesthesia or peripheral nerve blocks, with or without moderate sedation. If moderate sedation is used, ventilation should be continuously monitored by capnography or another automated method if feasible because of the increased risk of undetected airway obstruction in these patients.†† Consider administering CPAP or using an oral appliance during sedation to patients previously treated with these modalities. General anesthesia with a secure airway is preferable to deep sedation without a secure airway, particularly for procedures that may mechanically compromise the airway. Major conduction anesthesia (spinal/epidural) should be considered for peripheral procedures. Unless there is a medical or surgical contraindication, patients at increased perioperative risk from OSA should be extubated while awake. Full reversal of neuromuscular block should be verified before extubation. When possible, extubation and recovery should be carried out in the lateral, semiprone, or other nonsupine positions.

V. Postoperative Management

Risk factors for postoperative respiratory depression may include the underlying severity of the sleep apnea, systemic administration of opioids, use of sedatives, site and invasiveness of surgical procedure, and the potential for apnea during rapid eye movement (REM) sleep on the third or fourth postoperative day (i.e., “REM rebound”), as sleep patterns are reestablished. Postoperative interventions to manage OSA patients who may be susceptible to the above risks include the topics of (1) postoperative analgesia, (2) oxygenation, (3) patient positioning, and (4) monitoring.

Postoperative Analgesia. The literature is insufficient to evaluate outcomes associated with postoperative regional versus systemic analgesic techniques on patients with OSA; similarly, the literature is insufficient to evaluate outcomes associated with postoperative central regional (i.e., neuraxial) versus systemic techniques.‡‡ The literature is insufficient to evaluate the effect of adding a basal infusion to systemic patient-controlled opioids on the oxygenation of patients with OSA.

Oxygenation. The literature is insufficient to evaluate the effects of postoperative supplemental oxygen administration in patients with OSA. An RCT indicates improved ventilatory function for OSA patients when postoperative CPAP is compared with no postoperative CPAP (Category A3-B evidence).§§

Patient Positioning. Comparative observational studies indicate an improvement in apnea—hypopnea index scores when adult nonsurgical OSA patients sleep in the lateral, prone, or sitting positions rather than the supine (Category B1-B evidence).††† The literature is insufficient to evaluate the effects of positioning adult or pediatric OSA patients in the postoperative setting.

Monitoring. Observational studies and case reports indicate that continuous postoperative monitoring with pulse oximetry is effective in detecting hypoxic events (Category B3-B evidence). The literature is insufficient to examine the impact of monitored postoperative settings (e.g., stepdown or intensive care unit) versus routine hospital wards for patients with known or suspected OSA. However, an observational study reports lower frequencies of rescue events and transfers to the intensive care unit when a continuous pulse oximetry surveillance system was introduced into the postoperative care setting for a general patient population. The literature is insufficient to offer guidance regarding the appropriate duration of postoperative respiratory monitoring in patients with OSA.

The consultants and ASA members strongly agree that regional analgesic techniques should be considered to reduce or eliminate the requirement for systemic opioids in patients at increased perioperative risk from OSA. They both agree that if neuraxial analgesia is planned, the benefits (improved analgesia, decreased need for systemic opioids) and risks (respiratory depression from rostral spread) of using an opioid or opioid—local anesthetic mixture rather than a local anesthetic alone should be weighed. The consultants and ASA members strongly agree that if patient-controlled systemic opioids are used, continuous background infusions should be avoided or used with extreme caution. In addition, they both strongly agree that to reduce opioid requirements, nonsteroidal antiinflammatory agents and other modalities (e.g., ice, transcutaneous electrical nerve stimulation) should be considered if appropriate. The consultants agree and the ASA members strongly agree that supplemental oxygen should be administered continuously to all patients who are at increased perioperative risk from OSA until they are able to maintain their baseline oxygen saturation while breathing room air. They both strongly agree that when
feasible, CPAP or NIPPV (with or without supplemental oxygen) should be continuously administered postoperatively to patients who were using these modalities preoperatively, unless contraindicated by the surgical procedure. The consultants and ASA members agree that if possible, patients at increased perioperative risk from OSA should be placed in nonsupine positions throughout the recovery process. The ASA members agree and the consultants strongly agree that hospitalized patients who are at increased risk of respiratory compromise from OSA should have continuous pulse oximetry monitoring after discharge from the recovery room. In addition, the ASA members agree and the consultants strongly agree that continuous monitoring should be maintained as long as patients remain at increased risk. Finally, both the consultants and ASA members strongly agree that if frequent or severe airway obstruction or hypoxemia occurs during postoperative monitoring, initiation of nasal CPAP or NIPPV should be considered. For children undergoing tonsillectomy for OSA, the Task Force cautions that repeated hypoxemia may alter μ-opioid receptors, making these children sensitive to opioids and therefore requiring a reduced opioid dose (i.e., approximately half the usual dose).|||

Recommendations for Postoperative Management

Regional analgesic techniques should be considered to reduce or eliminate the requirement for systemic opioids in patients at increased perioperative risk from OSA. If neuraxial analgesia is planned, weigh the benefits (improved analgesia, decreased need for systemic opioids) and risks (respiratory depression from rostral spread) of using an opioid or opioid–local anesthetic mixture rather than a local anesthetic alone. If patient-controlled systemic opioids are used, continuous background infusions should be avoided or used with extreme caution. To reduce opioid requirements, nonsteroidal antiinflammatory agents and other modalities (e.g., ice, transcutaneous electrical nerve stimulation) should be considered if appropriate. Clinicians are cautioned that the concurrent administration of sedative agents (e.g., benzodiazepines, barbiturates) increases the risk of respiratory depression and airway obstruction.

Supplemental oxygen should be administered continuously to all patients who are at increased perioperative risk from OSA until they are able to maintain their baseline oxygen saturation while breathing room air.## When feasible, CPAP or NIPPV (with or without supplemental oxygen) should be continuously administered to patients who were using these modalities preoperatively, unless contraindicated by the surgical procedure. Compliance with CPAP or NIPPV may be improved if patients bring their own equipment to the hospital.

If possible, patients at increased perioperative risk from OSA should be placed in nonsupine positions throughout the recovery process. Hospitalized patients who are at increased risk of respiratory compromise from OSA should have continuous pulse oximetry monitoring after discharge from the recovery room. Continuous monitoring may be provided in a critical care or stepdown unit, by telemetry on a hospital ward, or by a dedicated, appropriately trained professional observer in the patient’s room. Continuous monitoring should be maintained as long as patients remain at increased risk.*** If frequent or severe airway obstruction or hypoxemia occurs during postoperative monitoring, initiation of nasal CPAP or NIPPV should be considered.

VI. Criteria for Discharge to Unmonitored Settings

The literature is insufficient to offer guidance regarding the appropriate time for discharge of patients at increased perioperative risk from OSA from the surgical facility. The consultants and ASA members strongly agree that patients at increased perioperative risk from OSA should not be discharged from the recovery area to an unmonitored setting (i.e., home or unmonitored hospital bed) until they are no longer at risk of postoperative respiratory depression. Moreover, they both agree that to establish that patients are able to maintain adequate oxygen saturation levels while breathing room air, respiratory function may be determined by observing patients in an unstimulated environment, preferably while asleep.

Recommendations for Criteria for Discharge to Unmonitored Settings

Patients at increased perioperative risk from OSA should not be discharged from the recovery area to an unmonitored setting (i.e., home or unmonitored hospital bed) until they are no longer at risk of postoperative respiratory depression.††† To establish that patients are able to maintain adequate oxygen saturation levels while breathing room air, respiratory function may be determined by observing patients in an unstimulated environment, preferably while asleep.

Appendix 1. Summary of Recommendations

I. Preoperative Evaluation

- Anesthesiologists should work with surgeons to develop a protocol whereby patients in whom the possibility

Reduction or avoidance of systemic opioids is of particular concern for some high-risk OSA patient populations. In October, 2012, the U.S. Food and Drug Administration posted a Box Warning to be added to the drug labels of codeine-containing products about the risk of codeine in postoperative pain management in children after tonsillectomy and/or adenoidectomy. They note that “Health care professionals should prescribe an alternate analgesic for postoperative pain control in children who are undergoing tonsillectomy and/or adenoidectomy. Codeine should not be used for pain in children after these procedures. For management of other types of pain in children, codeine should only be used if the benefits are anticipated to outweigh the risks.” (Updated February 20, 2013). For more information, go to the following web address: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm315627.htm.

** The Task Force cautions that supplemental oxygen may increase the duration of apneic episodes and may hinder detection of atelectasis, transient apnea, and hypoventilation by pulse oximetry.

*** Intermittent pulse oximetry or continuous bedside oximetry without continuous observation does not provide the same level of safety.

††† Because of their propensity to develop airway obstruction or central respiratory depression, this may require a longer stay as compared with non-OSA patients undergoing similar procedures.
of obstructive sleep apnea (OSA) is suspected on clinical grounds are evaluated long enough before the day of surgery to allow preparation of a perioperative management plan.

- This evaluation may be initiated in a preanesthesia clinic (if available) or by direct consultation from the operating surgeon to the anesthesiologist.

- A preoperative evaluation should include a comprehensive review of previous medical records (if available), an interview with the patient and/or family, and conducting a physical examination.

- Medical records review should include (but not be limited to) checking for a history of airway difficulty with previous anesthetics, hypertension, or other cardiovascular problems, and other congenital or acquired medical conditions.

- Review of sleep studies is encouraged.

- The patient and family interview should include focused questions related to snoring, apneic episodes, frequent arousals during sleep (e.g., vocalization, shifting position, and extremity movements), morning headaches, and daytime somnolence.

- A physical examination should include an evaluation of the airway, nasopharyngeal characteristics, neck circumference, tonsil size, and tongue volume.

- If any characteristics noted during the preoperative evaluation suggest that the patient has OSA, the anesthesiologist and surgeon should jointly decide whether to (1) manage the patient perioperatively based on clinical criteria alone or (2) obtain sleep studies, conduct a more extensive airway examination, and initiate indicated OSA treatment in advance of surgery.

- If the preoperative evaluation does not occur until the day of surgery, the surgeon and anesthesiologist together may elect for presumptive management based on clinical criteria or a last-minute delay of surgery.

- For safety, clinical criteria should be designed to have a high degree of sensitivity (despite the resulting low specificity), meaning that some patients may be treated more aggressively than would be necessary if a sleep study was available.

- The severity of the patient’s OSA, the invasiveness of the diagnostic or therapeutic procedure, and the requirement for postoperative analgesics should be taken into account in determining whether a patient is at increased perioperative risk from OSA.

- The patient and his or her family as well as the surgeon should be informed of the potential implications of OSA on the patient’s perioperative course.

II. Inpatient versus Outpatient Surgery

- Before patients at increased perioperative risk from OSA are scheduled to undergo surgery, a determination should be made regarding whether a surgical procedure is most appropriately performed on an inpatient or outpatient basis.

- Factors to be considered in determining whether outpatient care is appropriate include (1) sleep apnea status, (2) anatomical and physiologic abnormalities, (3) status of coexisting diseases, (4) nature of surgery, (5) type of anesthesia, (6) need for postoperative opioids, (7) patient age, (8) adequacy of postdischarge observation, and (9) capabilities of the outpatient facility.

- The availability of emergency difficult airway equipment, respiratory care equipment, radiology facilities, clinical laboratory facilities, and a transfer agreement with an inpatient facility should be considered in making this determination.

III. Preoperative Preparation

- Preoperative initiation of continuous positive airway pressure (CPAP) should be considered, particularly if OSA is severe.

- For patients who do not respond adequately to CPAP, non-invasive positive pressure ventilation should be considered.

- The preoperative use of mandibular advancement devices or oral appliances and preoperative weight loss should be considered when feasible.

- A patient who has had corrective airway surgery (e.g., uvulopalatopharyngoplasty, surgical mandibular advancement) should be assumed to remain at risk of OSA complications unless a normal sleep study has been obtained and symptoms have not returned.

- Patients with known or suspected OSA may have difficult airways and therefore should be managed according to the “Practice Guidelines for Management of the Difficult Airway: An Updated Report.”*

IV. Intraoperative Management

- Because of their propensity for airway collapse and sleep deprivation, patients at increased perioperative risk from OSA are especially susceptible to the respiratory depressant and airway effects of sedatives, opioids, and inhaled anesthetics; therefore, the potential for postoperative respiratory compromise should be considered in selecting intraoperative medications.

- For superficial procedures, consider the use of local anesthesia or peripheral nerve blocks, with or without moderate sedation.

- If moderate sedation is used, ventilation should be continuously monitored by capnography or another automated method if feasible because of the increased risk of undetected airway obstruction in these patients.

- Consider administering CPAP or using an oral appliance during sedation to patients previously treated with these modalities.

††† Screening protocols or questionnaires may be useful for identifying these clinical characteristics.
• General anesthesia with a secure airway is preferable to deep sedation without a secure airway, particularly for procedures that may mechanically compromise the airway.
• Major conduction anesthesia (spinal/epidural) should be considered for peripheral procedures.
• Unless there is a medical or surgical contraindication, patients at increased perioperative risk from OSA should be extubated while awake.
• Full reversal of neuromuscular block should be verified before extubation.
• When possible, extubation and recovery should be carried out in the lateral, semiupright, or other nonsupine position.

V. Postoperative Management
• Regional analgesic techniques should be considered to reduce or eliminate the requirement for systemic opioids in patients at increased perioperative risk from OSA.
• If neuraxial analgesia is planned, weigh the benefits (improved analgesia and decreased need for systemic opioids) and risks (respiratory depression from rostral spread) of using an opioid or opioid–local anesthetic mixture rather than a local anesthetic alone.
• If patient-controlled systemic opioids are used, continuous background infusions should be avoided or used with extreme caution.
• To reduce opioid requirements, nonsteroidal antiinflammatory agents and other modalities (e.g., ice, transcutaneous electrical nerve stimulation) should be considered if appropriate.
• Clinicians are cautioned that the concurrent administration of sedative agents (e.g., benzodiazepines and barbiturates) increases the risk of respiratory depression and airway obstruction.
• Supplemental oxygen should be administered continuously to all patients who are at increased perioperative risk from OSA until they are able to maintain their baseline oxygen saturation while breathing room air.
 • The Task Force cautions that supplemental oxygen may increase the duration of apneic episodes and may hinder detection of atelectasis, transient apnea, and hypventilation by pulse oximetry.
• When feasible, CPAP or noninvasive positive pressure ventilation (with or without supplemental oxygen) should be continuously administered to patients who were using these modalities preoperatively, unless contraindicated by the surgical procedure.
 • Compliance with CPAP or noninvasive positive pressure ventilation may be improved if patients bring their own equipment to the hospital.
• If possible, patients at increased perioperative risk from OSA should be placed in nonsupine positions throughout the recovery process.

VI. Criteria for Discharge to Unmonitored Settings
• Patients at increased perioperative risk from OSA should not be discharged from the recovery area to an unmonitored setting (i.e., home or unmonitored hospital bed) until they are no longer at risk of postoperative respiratory depression.
 • Because of their propensity to develop airway obstruction or central respiratory depression, this may require a longer stay as compared with non-OSA patients undergoing similar procedures.
• To establish that patients are able to maintain adequate oxygen saturation levels while breathing room air, respiratory function may be determined by observing patients in an unstimulated environment, preferably while asleep.

Appendix 2. Methods and Analyses
A. State of the Literature
For these updated Guidelines, a review of studies used in the development of the original Guidelines was combined with studies published subsequent to approval of the original Guidelines in 2005.* The scientific assessment of these Guidelines was based on evidence linkages or statements regarding potential relationships between clinical interventions and outcomes. The interventions listed below were examined to assess their relationship to a variety of outcomes related to the perioperative management of patients with obstructive sleep apnea.

Preoperative Evaluation
Medical records review
Patient/family interview and screening protocol
Focused physical examination
Sleep study

Preoperative Preparation
Preoperative treatment/optimization for obstructive sleep apnea (e.g., continuous positive airway pressure [CPAP], noninvasive positive pressure ventilation, mandibular appliances, and medical treatment)

§§§ Intermittent pulse oximetry or continuous bedside oximetry without continuous observation does not provide the same level of safety.
Consult the American Society of Anesthesiologists “Practice Guidelines for Management of the Difficult Airway” Limit procedures to facilities with full hospital services

Intraoperative Management

Anesthesia technique
- Local or regional anesthesia *versus* general anesthesia
- Combined regional and general anesthesia *versus* general anesthesia
- Sedation *versus* general anesthesia

Monitoring
- Continuously monitor the respiratory depressant effects of sedatives and/or opioids *(e.g., level of consciousness, pulmonary ventilation, oxygenation, and automated apnea monitoring)*
- Special intraoperative monitoring techniques *(arterial line, pulmonary artery catheter)*

Extubation:
- Verify the full reversal of neuromuscular block before extubation
- Extubate patients after they are fully awake *(es. asleep or partially awake)*
- Extubate patients in the semiupright, lateral, or prone positions *(vs. supine)*

Postoperative Management

Analogic use
- Regional analogic techniques without neuraxial opioids *versus* systemic opioids
- Neuraxial opioids *versus* systemic opioids
- Oral analgesics *versus* parenteral opioids
- Patient-controlled analgesia without a background infusion *versus* patient-controlled analgesia with a background infusion
- Titration or lower dosage levels of systemic opioids

Oxygenation
- Supplemental oxygen *versus* no supplemental oxygen
- CPAP *versus* no CPAP *(oxygen or room air)*
- CPAP for patients who had previously been on CPAP *versus* CPAP for patients not previously on CPAP
- Noninvasive positive pressure ventilation *versus* no noninvasive positive pressure ventilation *(CPAP, oxygen, or room air)*

Patient positioning
- Lateral, prone, or tonsil positions *versus* the supine position

Monitoring
- Telemetry monitoring systems *versus* no telemetry monitoring systems
- Monitored settings *versus* routine hospital wards

- Length of stay
- Extended stay in postanesthesia care unit *versus* no extended stay in postanesthesia care unit
- Hospital admission *versus* discharge home

For the literature review, potentially relevant clinical studies were identified *via* electronic and manual searches of the literature. The electronic and manual searches covered a 61 yr period from 1953 to 2013. More than 2,000 citations were initially identified, yielding a total of 835 nonoverlapping articles that addressed topics related to the evidence linkages. After review of the articles, 476 studies did not provide direct evidence and were subsequently eliminated. A total of 359 articles contained direct linkage-related evidence. A complete bibliography used to develop these Guidelines, organized by section, is available as Supplemental Digital Content 2, http://links.lww.com/ALN/B7.

No evidence linkage contained sufficient literature with well-defined experimental designs and statistical information to conduct an analysis of aggregated randomized controlled trials *(i.e., meta-analysis)*. A complete bibliography used to develop these updated Guidelines, organized by section, is available as Supplemental Digital Content 2, http://links.lww.com/ALN/B7.

Interobserver agreement among Task Force members and two methodologists was established by interrater reliability testing. Agreement levels using a kappa *(k)* statistic for two-rater agreement pairs were as follows: *(1) type of study design, k = 0.50 to 0.69; (2) type of analysis, k = 0.43 to 0.60; (3) evidence linkage assignment, k = 0.88 to 1.00; and (4) literature inclusion for database, k = 0.44 to 0.87.* Three-rater chance-corrected agreement values were *(1) study design, Sav = 0.56, Var (Sav) = 0.009; (2) type of analysis, Sav = 0.54, Var (Sav) = 0.011; (3) linkage assignment, Sav = 0.87, Var (Sav) = 0.003; and (4) literature database inclusion, Sav = 0.58, Var (Sav) = 0.030.* These values represent moderate to high levels of agreement.

B. Consensus-based Evidence

Consensus was obtained from multiple sources, including *(1) updated surveys sent to consultants who were selected based on their knowledge or expertise in perioperative management of patients with obstructive sleep apnea and a random sample of American Society of Anesthesiologists members, (2) testimony from attendees of two publicly held open forums at two national anesthesia meetings,[] and (3) Task Force opinion and interpretation.* An updated opinion survey of consultant and American Society of Anesthesiologists members regarding the management of patients with known or suspected obstructive sleep apnea was conducted. The survey rate of return for the consultants was 53% *(N = 54 of 102)* and 267 responses were obtained from the random sample of American Society of Anesthesiologists members. Summary results of these surveys are reported in the text of these updated Guidelines, with a complete and full reporting of all questionnaire item responses in tables 3 and 4.

Table 1. Identification and Assessment of OSA: Example

A. Clinical signs and symptoms suggesting the possibility of OSA
 1. Predisposing physical characteristics
 • Adult patients: BMI 35 kg/m²
 • Pediatric patients: 95th percentile for age and sex
 • Neck circumference 17 inches (men) or 16 inches (women)
 • Craniofacial abnormalities affecting the airway
 • Anatomical nasal obstruction
 • Tonsils nearly touching or touching in the midline
 2. History of apparent airway obstruction during sleep
 Two or more of the following are present: (if patient lives alone or sleep is not observed by another person then only one condition needs to be present)
 • Loud snoring (loud enough to be heard through closed door)
 • Frequent snoring
 • Observed pauses in breathing during sleep
 • Awakens from sleep with choking sensation
 • Frequent arousals from sleep
 • Pediatric patients:
 ° Intermittent vocalization during sleep
 ° Parental report of restless sleep, difficulty breathing, or struggling respiratory efforts during sleep
 ° Child with night terrors
 ° Child sleeps in unusual positions
 ° Child with new onset enuresis
 3. Somnolence (one or more of the following is present)
 • Frequent daytime somnolence or fatigue despite adequate “sleep”
 • Falls asleep easily in a nonstimulating environment (e.g., watching television, reading, riding in, or driving a car) despite adequate “sleep”
 • Pediatric patients: parent or teacher comments that child appears sleepy during the day, is easily distracted, is overly aggressive, is irritable, or has difficulty concentrating
 • Pediatric patients: child often difficult to arouse at usual awakening time

If a patient has signs or symptoms in two or more of the above categories, there is a significant probability that he or she has OSA. The severity of OSA may be determined by sleep study (see below). If a sleep study is not available, such patients should be treated as though they have moderate sleep apnea unless one or more of the signs or symptoms above is severely abnormal (e.g., markedly increased BMI or neck circumference, respiratory pauses which are frightening to the observer, patient regularly falls asleep within minutes after being left unstimulated without another explanation) in which case they should be treated as though they have severe sleep apnea.

B. If a sleep study has been done, the results should be used to determine the perioperative anesthetic management of a patient. However, because sleep laboratories differ in their criteria for detecting episodes of apnea and hypopnea, the Task Force believes that the sleep laboratory’s assessment (none, mild, moderate, or severe) should take precedence over the actual AHI. If the overall severity is not indicated, it may be determined by using the table below:

<table>
<thead>
<tr>
<th>Severity of OSA</th>
<th>Adult AHI</th>
<th>Pediatric AHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0–5</td>
<td>0</td>
</tr>
<tr>
<td>Mild OSA</td>
<td>6–20</td>
<td>1–5</td>
</tr>
<tr>
<td>Moderate OSA</td>
<td>21–40</td>
<td>6–10</td>
</tr>
<tr>
<td>Severe OSA</td>
<td>>40</td>
<td>>10</td>
</tr>
</tbody>
</table>

AHI = apnea-hypopnea index: the number of episodes of sleep-disordered breathing per hour; BMI = body mass index; OSA = obstructive sleep apnea.
Table 3. Consultant Survey Responses

<table>
<thead>
<tr>
<th>Percent Responding to Each Item</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Equivocal</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Preoperative evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Anesthesiologists should work with surgeons to develop a protocol whereby patients in whom the possibility of OSA is suspected on clinical grounds are evaluated long enough before the day of surgery to allow preparation of a perioperative management</td>
<td>54</td>
<td>64.8*</td>
<td>27.8</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>2. A preoperative evaluation should include (1) a comprehensive review of previous medical records (if available), (2) an interview with the patient and/or family, and (3) conducting a physical examination</td>
<td>54</td>
<td>74.1</td>
<td>20.4</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>3. If any characteristics noted during the preoperative evaluation suggest that the patient has OSA, the anesthesiologist and surgeon should jointly decide whether to (1) manage the patient perioperatively based on clinical criteria alone, or (2) obtain sleep studies, conduct a more extensive airway examination, and initiate indicated OSA treatment in advance of surgery</td>
<td>54</td>
<td>48.1</td>
<td>35.2*</td>
<td>14.8</td>
<td>1.9</td>
</tr>
<tr>
<td>4. If the preoperative evaluation does not occur until the day of surgery, the surgeon and anesthesiologist together may elect for presumptive management based on clinical criteria or a last-minute delay of surgery</td>
<td>54</td>
<td>29.6</td>
<td>48.1*</td>
<td>13.0</td>
<td>9.3</td>
</tr>
</tbody>
</table>

(Continued)
5. The severity of the patient's OSA, the invasiveness of the diagnostic or therapeutic procedure, and the requirement for postoperative analgesics should be taken into account in determining whether a patient is at increased perioperative risk from OSA.

6. The patient and his or her family as well as the surgeon should be informed of the potential implications of OSA on the patient's perioperative course.

II. Inpatient vs. outpatient surgery

7. Before patients at increased perioperative risk from OSA are scheduled to undergo surgery, a determination should be made regarding whether a surgical procedure is most appropriately performed on an inpatient or outpatient basis.

III. Preoperative preparation

8. Preoperative initiation of CPAP should be considered, particularly if OSA is severe.

9. For patients who do not respond adequately to CPAP, NIPPV should be considered.

10. The preoperative use of mandibular advancement devices or oral appliances and preoperative weight loss should be considered when feasible.

11. Patients with known or suspected OSA may have difficult airways and therefore should be managed according to the “Practice Guidelines for Management of the Difficult Airway: An Updated Report, ANESTHESIOLOGY 2013; 118:251–70”.

IV. Intraoperative management

12. The potential for postoperative respiratory compromise should be considered in selecting intraoperative medications.

13. For superficial procedures, consider the use of local anesthesia or peripheral nerve blocks, with or without moderate sedation.

14. Consider administering CPAP or using an oral appliance during sedation to patients previously treated with these modalities.

15. General anesthesia with a secure airway is preferable to deep sedation without a secure airway, particularly for procedures that may mechanically compromise the airway.

16. Major conduction anesthesia (spinal/epidural) should be considered for peripheral procedures.

17. Unless there is a medical or surgical contraindication, patients at increased perioperative risk from OSA should be extubated while awake.

18. Full reversal of neuromuscular block should be verified before extubation.

19. When possible, extubation and recovery should be carried out in the lateral, semiupright, or other nonsupine positions.

V. Postoperative management

20. Regional analgesic techniques should be considered to reduce or eliminate the requirement for systemic opioids in patients at increased perioperative risk from OSA.

21. If neuraxial analgesia is planned, weigh the benefits (improved analgesia, decreased need for systemic opioids) and risks (respiratory depression from rostral spread) of using an opioid or opioid–local anesthetic mixture rather than a local anesthetic alone.

<table>
<thead>
<tr>
<th>Percent Responding to Each Item</th>
<th>N</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Equivocal</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. The severity of the patient's OSA, the invasiveness of the diagnostic or therapeutic procedure, and the requirement for postoperative analgesics should be taken into account in determining whether a patient is at increased perioperative risk from OSA.</td>
<td>54</td>
<td>87.0*</td>
<td>13.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6. The patient and his or her family as well as the surgeon should be informed of the potential implications of OSA on the patient's perioperative course.</td>
<td>54</td>
<td>77.8*</td>
<td>16.7</td>
<td>5.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7. Before patients at increased perioperative risk from OSA are scheduled to undergo surgery, a determination should be made regarding whether a surgical procedure is most appropriately performed on an inpatient or outpatient basis.</td>
<td>54</td>
<td>59.3*</td>
<td>27.8</td>
<td>9.3</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>8. Preoperative initiation of CPAP should be considered, particularly if OSA is severe.</td>
<td>54</td>
<td>40.7</td>
<td>29.6*</td>
<td>24.1</td>
<td>3.7</td>
<td>1.9</td>
</tr>
<tr>
<td>9. For patients who do not respond adequately to CPAP, NIPPV should be considered.</td>
<td>54</td>
<td>9.3</td>
<td>37.0</td>
<td>44.4*</td>
<td>5.6</td>
<td>3.7</td>
</tr>
<tr>
<td>10. The preoperative use of mandibular advancement devices or oral appliances and preoperative weight loss should be considered when feasible.</td>
<td>54</td>
<td>9.3</td>
<td>33.3</td>
<td>37.0*</td>
<td>18.5</td>
<td>1.9</td>
</tr>
<tr>
<td>11. Patients with known or suspected OSA may have difficult airways and therefore should be managed according to the “Practice Guidelines for Management of the Difficult Airway: An Updated Report, ANESTHESIOLOGY 2013; 118:251–70”.</td>
<td>54</td>
<td>35.2</td>
<td>46.3*</td>
<td>13.0</td>
<td>3.7</td>
<td>1.9</td>
</tr>
<tr>
<td>12. The potential for postoperative respiratory compromise should be considered in selecting intraoperative medications.</td>
<td>54</td>
<td>66.7*</td>
<td>29.6</td>
<td>3.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13. For superficial procedures, consider the use of local anesthesia or peripheral nerve blocks, with or without moderate sedation.</td>
<td>54</td>
<td>50.0*</td>
<td>44.4</td>
<td>3.7</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>14. Consider administering CPAP or using an oral appliance during sedation to patients previously treated with these modalities.</td>
<td>54</td>
<td>38.9</td>
<td>37.0*</td>
<td>18.5</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>15. General anesthesia with a secure airway is preferable to deep sedation without a secure airway, particularly for procedures that may mechanically compromise the airway.</td>
<td>54</td>
<td>68.5*</td>
<td>24.1</td>
<td>5.6</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>16. Major conduction anesthesia (spinal/epidural) should be considered for peripheral procedures.</td>
<td>54</td>
<td>42.6</td>
<td>42.6*</td>
<td>11.1</td>
<td>3.7</td>
<td>0.0</td>
</tr>
<tr>
<td>17. Unless there is a medical or surgical contraindication, patients at increased perioperative risk from OSA should be extubated while awake.</td>
<td>54</td>
<td>55.6*</td>
<td>25.9</td>
<td>16.7</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>18. Full reversal of neuromuscular block should be verified before extubation.</td>
<td>54</td>
<td>70.4*</td>
<td>24.1</td>
<td>3.7</td>
<td>1.9</td>
<td>0.0</td>
</tr>
<tr>
<td>19. When possible, extubation and recovery should be carried out in the lateral, semiupright, or other nonsupine positions.</td>
<td>54</td>
<td>50.0*</td>
<td>33.3</td>
<td>9.3</td>
<td>7.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(Continued)
Table 4. ASA Members Survey Responses

<table>
<thead>
<tr>
<th>Percent Responding to Each Item</th>
<th>N</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Equivocal</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
</table>

I. Preoperative evaluation

1. Anesthesiologists should work with surgeons to develop a protocol whereby patients in whom the possibility of OSA is suspected on clinical grounds are evaluated long enough before the day of surgery to allow preparation of a perioperative management

 267 55.4* 27.0 14.6 2.2 0.7

2. A preoperative evaluation should include (1) a comprehensive review of previous medical records (if available), (2) an interview with the patient and/or family, and (3) conducting a physical examination

 267 71.2* 22.1 5.6 1.1 0.0

(Continued)
3. If any characteristics noted during the preoperative evaluation suggest that the patient has OSA, the anesthesiologist and surgeon should jointly decide whether to (1) manage the patient perioperatively based on clinical criteria alone, or (2) obtain sleep studies, conduct a more extensive airway examination, and initiate indicated OSA treatment in advance of surgery.

4. If the preoperative evaluation does not occur until the day of surgery, the surgeon and anesthesiologist together may elect for presumptive management based on clinical criteria or a last-minute delay of surgery.

5. The severity of the patient’s OSA, the invasiveness of the diagnostic or therapeutic procedure, and the requirement for postoperative analgesics should be taken into account in determining whether a patient is at increased perioperative risk from OSA.

6. The patient and his or her family as well as the surgeon should be informed of the potential implications of OSA on the patient’s perioperative course.

II. Inpatient vs. outpatient surgery

7. Before patients at increased perioperative risk from OSA are scheduled to undergo surgery, a determination should be made regarding whether a surgical procedure is most appropriately performed on an inpatient or outpatient basis.

III. Preoperative preparation

8. Preoperative initiation of CPAP should be considered, particularly if OSA is severe.

9. For patients who do not respond adequately to CPAP, NIPPV should be considered.

10. The preoperative use of mandibular advancement devices or oral appliances and preoperative weight loss should be considered when feasible.

11. Patients with known or suspected OSA may have difficult airways and therefore should be managed according to the “Practice Guidelines for Management of the Difficult Airway: an Updated Report, ANESTHESIOLOGY 2013; 118:251–70.”

IV. Intraoperative management

12. The potential for postoperative respiratory compromise should be considered in selecting intraoperative medications.

13. For superficial procedures, consider the use of local anesthesia or peripheral nerve blocks, with or without moderate sedation.

14. Consider administering CPAP or using an oral appliance during sedation to patients previously treated with these modalities.

15. General anesthesia with a secure airway is preferable to deep sedation without a secure airway, particularly for procedures that may mechanically compromise the airway.

16. Major conduction anesthesia (spinal/epidural) should be considered for peripheral procedures.

17. Unless there is a medical or surgical contraindication, patients at increased perioperative risk from OSA should be extubated while awake.

18. Full reversal of neuromuscular block should be verified before extubation.

19. When possible, extubation and recovery should be carried out in the lateral, semiprivate, or other nonsupine positions.

Table 4. Continued

<table>
<thead>
<tr>
<th>N</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Equivocal</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
</table>

(Continued)
V. Postoperative management

20. Regional analgesic techniques should be considered to reduce or eliminate the requirement for systemic opioids in patients at increased perioperative risk from OSA

21. If neuraxial analgesia is planned, weigh the benefits (improved analgesia, decreased need for systemic opioids) and risks (respiratory depression from rostral spread) of using an opioid or opioid-local anesthetic mixture rather than a local anesthetic alone

22. If patient-controlled systemic opioids are used, continuous background infusions should be avoided or used with extreme caution

23. To reduce opioid requirements, nonsteroidal antinflammatory agents and other modalities (e.g., ice, transcutaneous electrical nerve stimulation) should be considered if appropriate

24. Supplemental oxygen should be administered continuously to all patients who are at increased perioperative risk from OSA until they are able to maintain their baseline oxygen saturation while breathing room air

25. When feasible, CPAP or NIPPV (with or without supplemental oxygen) should be continuously administered postoperatively to patients who were using these modalities preoperatively, unless contraindicated by the surgical procedure

26. If possible, patients at increased perioperative risk from OSA should be placed in nonsupine positions throughout the recovery process

27. Hospitalized patients who are at increased risk of respiratory compromise from OSA should have continuous pulse oximetry monitoring after discharge from the recovery room

28. Continuous monitoring should be maintained as long as patients remain at increased risk

29. If frequent or severe airway obstruction or hypoxemia occurs during postoperative monitoring, initiation of nasal CPAP or NIPPV should be considered

VI. Criteria for discharge to unmonitored settings

30. Patients at increased perioperative risk from OSA should not be discharged from the recovery area to an unmonitored setting (i.e., home or unmonitored hospital bed) until they are no longer at risk of postoperative respiratory depression

31. To establish that patients are able to maintain adequate oxygen saturation levels while breathing room air, respiratory function may be determined by observing patients in an unstimulated environment, preferably while asleep

N is the number of ASA members who responded to each item.

* Indicates the median.

ASA = American Society of Anesthesiologists; CPAP = continuous positive airway pressure; NIPPV = noninvasive positive pressure ventilation; OSA = obstructive sleep apnea.

Table 4. Continued

<table>
<thead>
<tr>
<th>Percent Responding to Each Item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>V. Postoperative management</td>
</tr>
<tr>
<td>21. If neuraxial analgesia is planned, weigh the benefits</td>
</tr>
<tr>
<td>22. If patient-controlled systemic opioids are used, continuous background infusions should be avoided or used with extreme caution</td>
</tr>
<tr>
<td>23. To reduce opioid requirements, nonsteroidal antinflammatory agents and other modalities (e.g., ice, transcutaneous electrical nerve stimulation) should be considered if appropriate</td>
</tr>
<tr>
<td>24. Supplemental oxygen should be administered continuously to all patients who are at increased perioperative risk from OSA until they are able to maintain their baseline oxygen saturation while breathing room air</td>
</tr>
<tr>
<td>25. When feasible, CPAP or NIPPV (with or without supplemental oxygen) should be continuously administered postoperatively to patients who were using these modalities preoperatively, unless contraindicated by the surgical procedure</td>
</tr>
<tr>
<td>26. If possible, patients at increased perioperative risk from OSA should be placed in nonsupine positions throughout the recovery process</td>
</tr>
<tr>
<td>27. Hospitalized patients who are at increased risk of respiratory compromise from OSA should have continuous pulse oximetry monitoring after discharge from the recovery room</td>
</tr>
<tr>
<td>28. Continuous monitoring should be maintained as long as patients remain at increased risk</td>
</tr>
<tr>
<td>29. If frequent or severe airway obstruction or hypoxemia occurs during postoperative monitoring, initiation of nasal CPAP or NIPPV should be considered</td>
</tr>
<tr>
<td>VI. Criteria for discharge to unmonitored settings</td>
</tr>
<tr>
<td>30. Patients at increased perioperative risk from OSA should not be discharged from the recovery area to an unmonitored setting (i.e., home or unmonitored hospital bed) until they are no longer at risk of postoperative respiratory depression</td>
</tr>
<tr>
<td>31. To establish that patients are able to maintain adequate oxygen saturation levels while breathing room air, respiratory function may be determined by observing patients in an unstimulated environment, preferably while asleep</td>
</tr>
</tbody>
</table>

N is the number of ASA members who responded to each item.

* Indicates the median.

ASA = American Society of Anesthesiologists; CPAP = continuous positive airway pressure; NIPPV = noninvasive positive pressure ventilation; OSA = obstructive sleep apnea.
References

33. Battagel JM, L'Estrange PR: The cephalometric morphological
of patients with obstructive sleep apnoea (OSA). Eur J
Orthod 1996; 18:557–69
34. Biddle C: Comparative aspects of the airway during general
anesthesia in obese sufferers of sleep apnea and matched
35. Biddle C: Orocephalometry and airway control in obese
sleep-disordered breathers, obese normals, and matched con-
trols undergoing general anesthesia. CRNA 1994; 5:97–103
36. deBerry-Borowiecki B, Kukwa A, Blanks RH: Cephalometric
analysis for diagnosis and treatment of obstructive sleep
37. Guilleminault C, Li K, Chen NH, Quera-Salva MA: Two-point pala-
tal discrimination in patients with upper airway resistance
syndrome, obstructive sleep apnea syndrome, and normal
control subjects. Chest 2002; 122:866–70
38. Hochwan B, Brandenburg U: Morphology of the viscerocrani-
um in obstructive sleep apnoea syndrome—Cephalometric
22:205–13
39. Jamieson A, Guilleminault C, Partinen M, Quera-Salva MA:
Obstructive sleep apneic patients have craniomandibular
abnormalities. Sleep 1986; 9:469–77
40. Kushida CA, Efron B, Guilleminault C: A predictive morpho-
tical model for the obstructive sleep apnea syndrome. Ann
Intern Med 1997; 127(8 Pt 1):581–7
41. Lyberg T, Krogstad O, Djupesland G: Cephalometric analy-
sis in patients with obstructive sleep apnoea syndrome. Eur
Intern Med 1997; 127(8 Pt 1):740–8
42. Lyberg T, Krogstad O, Djupesland G: Cephalometric analy-
sis in patients with obstructive sleep apnoea syndrome:
II. Soft tissue morphology. J Laryngol Otol 1989; 103:
293–7
C, Lévy P: Relationship between body mass index, age and
upper airway measurements in snorers and sleep apnoea
44. Pracharktam N, Hans MG, Strohl KP, Redline S: Upright and
supine cephalometric evaluation of obstructive sleep
apnea syndrome and snoring subjects. Angle Orthod 1999;
69:403–10
45. Riley R, Guilleminault C, Herran J, Powell N: Cephalometric
analyses and flow-volume loops in obstructive sleep apnea
patients. Sleep 1983; 6:303–11
46. Rivlin J, Hoffstein V, Kalbfleisch J, McNicholas W, Zameln L,
Bryan AC: Upper airway morphology in patients with idio-
pathic obstructive sleep apnea. Am Rev Respir Dis 1984;
129:355–60
47. Sakakihara H, Tong M, Matsushita K, Hirata M, Konishi Y,
Suetsugu S: Cephalometric abnormalities in non-obese and
obese patients with obstructive sleep apnea. Eur Respir J
1998; 12:645–53
48. Steinberg B, Fraser B: The cranial base in obstructive sleep
49. Tanguisorn V, Skatvedt O, Krogstad O, Lyberg T: Obstructive
sleep apnoea: A cephalometric study. Part II. Cervico-
17:45–56
50. Tanguisorn V, Skatvedt O, Krogstad O, Lyberg T: Obstructive
17:57–67
51. Yu X, Fujimoto K, Urushibata K, Matsuizawa Y, Kubo K:
Cephalometric analysis in obese and non-obese patients with
obstructive sleep apnea syndrome. Chest 2003; 124:
212–8
52. Zucconi M, Ferini-Strambi L, Palazzi S, Orena C, Zonta S,
Smirne S: Habitual snoring with and without obstructive
sleep apnoea: The importance of cephalometric variables.
53. Zucconi M, Ferini-Strambi L, Palazzi S, Curci C, Cucchi E,
Smirne S: Craniofacial cephalometric evaluation in habitual
snorers with and without obstructive sleep apnea. Otolar
54. Dyken ME, Lin-Dyken DC, Poulton S, Zimmerman MB,
Sedars E: Prospective polysomnographic analysis of obstruc-
tive sleep apnea in down syndrome. Arch Pediatr Adole-
sc Med 2003; 157:655–60
SL: Obstructive sleep apnea in children with Down syn-
56. Piper JG, Dirks BA, Traynells VC, VanGilder JC: Perioperative
management and surgical outcome of the acromegalic
patient with sleep apnea. Neurosurgery 1995; 36:70–4; dis-
cussion 74–5
57. Marcus CL, Ward SL, Mallory GB, Rosen CL, Becker
RC, Weese-Mayer DE, Brouillette RT, Trang HT, Brooks LJ:
Use of nasal continuous positive airway pressure as treat-
ment of childhood obstructive sleep apnea. J Pediatr 1995;
127:88–94
58. Ahmadi N, Chung SA, Gibbs A, Shapiro CM: The Berlin
questionnaire for sleep apnea in a sleep clinic population:
Relationship to polysomnographic measurement of respira-
Y: High STOP-Bang score indicates a high probability of
60. Chung F, Yegevasbaran B, Liao P, Chung SA, Vairavanathan
S, Islam S, Khajehdehi A, Shapiro CM: STOP question-
naire: A tool to screen patients for obstructive sleep apnea.
Anesthesiology 2008; 108:812–21
S, Islam S, Khajehdehi A, Shapiro CM: Validation of the
Berlin questionnaire and American Society of
Anesthesiologists checklist as screening tools for obstruc-
tive sleep apnea in surgical patients. Anesthesiology 2008;
108:822–30
the Berlin Questionnaire to identify patients at risk for the
63. Rosenthal LD, Dolan DC: The Epworth sleepiness scale in
the identification of obstructive sleep apnea. J Nerv Ment
Dis 2008; 196:429–31
64. Sharma SK, Vasudev C, Sinha S, Banga A, Pandey RM, Handa
KK: Validation of the modified Berlin questionnaire to iden-
tify patients at risk for the obstructive sleep apnoea syn-
65. Weatherwax KJ, Lin X, Marzec ML, Malow BA: Obstructive
sleep apnea in epilepsy patients: The Sleep Apnea scale of
the Sleep Disorders Questionnaire (SA-SDQ) is a useful
screening instrument for obstructive sleep apnea in a dis-
ease-specific population. Sleep Med 2003; 4:517–21
66. Kushida CA, Efron B, Guilleminault C: A predictive morpho-
tical model for the obstructive sleep apnea syndrome. Ann
Intern Med 1997; 127(8 Pt 1):581–7
67. Mortimore IL, Marshall I, Wraith PK, Sellars RJ, Douglas NJ:
Prospective polysomnographic analysis of obstructive
sleep apnoea: The importance of cephalometric variables.
68. Schwab RJ, Gupta KB, Gefter WB, Metzger LJ, Hoffman
EA, Pack AI: Upper airway and soft tissue anatomy in nor-
mals and patients with sleep-disordered breathing.
Significance of the lateral pharyngeal walls. Am J Respir
Care Med 1995; 152(5 Pt 1):1673–89
69. Schellenberg JB, Maislin G, Schwab RJ: Physical findings and
the risk for obstructive sleep apnea. The importance of oto-
pharyngeal structures. Am J Respir Crit Care Med 2000;
162(2 Pt 1):740–8

Anesthesiology 2014; 120:268-86
70. Galvin JR, Rooholamini SA, Stanford W: Obstructive sleep apnea: Diagnosis with ultrafast CT. Radiology 1989; 171:775–8
78. Cartwright RD: Effect of sleep position on sleep apnea severity. Sleep 1984; 7:110–4