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ABSTRACT
Background: Physical inactivity triggers a rapid loss of muscle
mass and function in older adults. Middle-aged adults show few
phenotypic signs of aging yet may be more susceptible to inactivity
than younger adults.
Objective: The aim was to determine whether leucine, a stimulator
of translation initiation and skeletal muscle protein synthesis
(MPS), can protect skeletal muscle health during bed rest.
Design: We used a randomized, double-blind, placebo-controlled
trial to assess changes in skeletal MPS, cellular signaling, body
composition, and skeletal muscle function in middle-aged adults
(n = 19; age 6 SEM: 52 6 1 y) in response to leucine supplemen-
tation (LEU group: 0.06 g ∙ kg21

∙ meal21) or an alanine control
(CON group) during 14 d of bed rest.
Results: Bed rest decreased postabsorptive MPS by 30% 6 9%
(CON group) and by 10%6 10% (LEU group) (main effect for time,
P, 0.05), but no differences between groups with respect to pre-post
changes (group 3 time interactions) were detected for MPS or cell
signaling. Leucine protected knee extensor peak torque (CON com-
pared with LEU group:215%6 2% and27%6 3%; group3 time
interaction, P , 0.05) and endurance (CON compared with LEU:
214% 6 3% and 22% 6 4%; group 3 time interaction, P , 0.05),
prevented an increase in body fat percentage (group 3 time in-
teraction, P , 0.05), and reduced whole-body lean mass loss after
7 d (CON compared with LEU: 21.5 6 0.3 and 20.8 6 0.3 kg;
group 3 time interaction, P , 0.05) but not 14 d (CON compared
with LEU: 21.5 6 0.3 and 21.0 6 0.3 kg) of bed rest. Leucine
also maintained muscle quality (peak torque/kg leg lean mass)
after 14 d of bed-rest inactivity (CON compared with LEU: 29%
6 2% and +1% 6 3%; group 3 time interaction, P , 0.05).
Conclusions: Bed rest has a profoundly negative effect on muscle me-
tabolism, mass, and function in middle-aged adults. Leucine supplemen-
tation may partially protect muscle health during relatively brief periods
of physical inactivity. This trial was registered at clinicaltrials.gov as
NCT00968344. Am J Clin Nutr 2016;103:465–73.
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INTRODUCTION

The negative consequences of physical inactivity on skeletal
muscle health have been well documented (1–4). Although

young adults are not immune to an inactivity-induced loss of
muscle mass and function, bed rest accelerates the rate of loss in
older populations (2, 5, 6). A reduction in postabsorptive and/or
postprandial muscle protein synthesis (MPS)9 appears to drive
the loss of muscle mass and function in unloading studies (2, 7–
10). Although skeletal muscle protein breakdown appears not to
be altered by bed rest in young, healthy research volunteers (5,
7, 11), it may be transiently elevated during the first several days
of disuse or play an increasing role in aging populations, dif-
ferent models of disuse, and clinical environments or when
additional catabolic stimuli are present (12–17).

We proposed that adequate nutritional support represents the
prerequisite framework to protect muscle health during periods of
physical inactivity (18). Exercise may act synergistically with
nutrition to protect muscle health during bed rest or disuse (19–
21). However, obstacles such as weakness, fatigue, injury, and
disease limit its utility in some circumstances (22).

Dietary interventions that include supplements should not be
unduly burdensome, provide excessive energy, or compromise
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the intake of regular meals and macronutrients (23). In young and
older adults, the ingestion of as little as 2–3 g leucine as part of
a mixed amino acid bolus, was shown to acutely stimulate
MPS via the phosphorylation of mammalian target of rapa-
mycin (mTOR) and its downstream targets, p70 S6 kinase
1 (S6K1) and 4E binding protein 1 (4E-BP1) (24–26). These
acute stimulatory effects appear to be maintained for at least
2 wk in healthy ambulatory adults receiving leucine-supplemented
mixed meals (27). However, the ability of chronic leucine
supplementation to improve skeletal muscle mass and function
in ambulatory, well-nourished adults is doubtful (28, 29).

Traditionally, muscle metabolism research has discretely
targeted young (18–40 y) and/or older ($65 y) adults (30–33).
Middle-aged adults are a largely unexamined research de-
mographic. Despite maintaining a generally youthful phenotype,
middle-aged adults may exhibit subtle behavioral and physio-
logic changes that preempt the onset of sarcopenia and increase
vulnerability to catabolic stressors such as bed rest (18, 34). We
hypothesized that leucine supplementation would preserve
muscle anabolism and protect common indexes of skeletal
muscle health during 14 d of bed rest in healthy middle-aged
adults.

METHODS

Subjects

Healthy community-dwelling men and women aged 45–60 y
old participated in this randomized, double-blind, placebo-
controlled study. Volunteers were recreationally active but
athletically untrained (Table 1). All of the study protocols and
procedures were conducted in accordance with the Declaration
of Helsinki and were reviewed and approved by the University
of Texas Medical Branch’s Institutional Review Board. After
providing written informed consent, volunteers were screened in
the University of Texas Medical Branch’s Institute for Trans-
lational Sciences–Clinical Research Center via a rigorous bat-
tery of medical tests and interviews (5, 8, 35). Subjects were
randomly assigned to an experimental group who received
leucine (LEU group: 0.06 g ∙ kg21

∙ meal21) or to the control
condition who received an isonitrogenous alanine supplement
(CON group: 0.06 g ∙ kg21

∙ meal21). On the basis of our pre-
vious bed-rest studies, we calculated that a sample size of n = 9/
group would have .0.90 power to detect a post–bed-rest dif-
ference in means between groups for our primary metabolic
outcome, fractional synthesis rate (FSR) of MPS of 0.025%/h,
with an SD of 0.015%/h at the 0.05 level. The general experi-
mental design is depicted in Figure 1.

Bed rest

The horizontal bed-rest model, 24 h/d subject monitoring,
safety, and comfort provisions were consistent with our previous
studies (5, 8, 35). All bathing and toiletry activities were per-
formed without bearing weight. To facilitate eating, bed backs
were raised to 58 during three 2-h periods each day, which
corresponded to daily meals.

Diet and supplementation

Subjects received controlled isoenergetic diets (55% carbohy-
drate, 30% fat, and 15% protein) with protein intake evenly dis-
tributed across 3 daily meals (0800, 1300, and 1800); snacking was
not permitted. Daily energy requirements were estimated using the
Harris-Benedict equation. Activity factors of 1.6 and 1.3 were used
during the ambulatory and bed-rest period, respectively (5, 8, 35).
Powdered L-leucine or L-alanine (0.06 g ∙ kg21

∙ meal21; Sigma-
Aldrich) was mixed with juice or milk and consumed with each
meal during the bed-rest phase of the study. Leucine and alanine
supplements were not provided during the initial 3-d ambulatory
period or the night before or during metabolic studies. Water was
provided ad libitum. Macronutrient intake and plate waste were
analyzed by using Nutrition Data System for Research software
(version 2006), developed by the Nutrition Coordinating Center,
University of Minnesota, Minneapolis, Minnesota.

Metabolic studies

At 0700 on days 4 and 18, after an overnight fast, an 18-gauge
polyethylene catheter (Insyte-W; BD Biosciences) was inserted
into an antecubital vein. Baseline blood samples were drawn
for analysis of phenylalanine enrichment. A second 18-gauge
polyethylene catheter was placed in the contralateral antecubital
vein and used to maintain a primed (2 mmol/kg), continuous
infusion (0.06 mmol ∙ kg21

∙ min21) of L-[ring-13C6]phenylalanine
(Cambridge Isotope Laboratories) throughout the study (Figure
2). Muscle biopsy samples were obtained from the vastus lateralis

TABLE 1

Baseline subject characteristics1

CON (n = 9) LEU (n = 10)

Age, y 52 6 1 51 6 1

Sex, n/n 3 F/6 M 4 F/6 M

Body mass, kg 75.7 6 3.9 73.1 6 3.7

Height, cm 175 6 3 173 6 4

BMI, kg/m2 24.7 6 1.4 24.6 6 0.9

1Values are means 6 SEMs. CON, control group; LEU, leucine-

supplemented group.

FIGURE 1 Study timeline. The pre–bed-rest phase consisted of a 3-d in-
patient stay during which subjects completed baseline testing of dependent
measures and consumed a controlled diet. During the 14-d bed-rest phase,
subjects continued to consume the research diet in addition to either a leucine
(experimental) or alanine (control) supplement with each of the 3 daily meals.
Dependent measures were reassessed post–bed rest; body composition was
also measured after 7 d of bed rest. Control group, n = 9; leucine-supplemented
group, n = 10. BR, bed rest; LEU, leucine.
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muscle by using a 5-mm Bergstrom biopsy needle and standard
technique (36). A standardized essential amino acid “research
meal” was consumed in beverage form immediately after the
second biopsy. The research meal was not representative of the
meals consumed during the general bed-rest period but rather was
intended to provide a reproducible anabolic stimulus during
the stable isotope studies. The research meal contained 1.2 g
histidine, 1.0 g isoleucine, 2.5 g leucine, 2.5 g lysine, 0.8 g me-
thionine, 1.0 g phenylalanine, 1.2 g threonine, and 1.5 g valine and
0.1 g L-[ring-13C6]phenylalanine to maintain plasma phenylalanine
enrichment.

Cell signaling and immunoblotting

Muscle tissue from biopsy 1 (postabsorptive) and biopsy 3 (1 h
postprandial) was used to assess changes in cell signaling, as
previously described (37). Briefly, frozen muscle tissue was
homogenized and total protein content was assayed. Fifty mi-
crograms of total protein was loaded in duplicate along with an
internal loading control and separated on either a 7.5% or 15%
polyacrylamide gel by electrophoresis (Criterion; Bio-Rad) at
150 V for 60 min. After separation, proteins were transferred to
polyvinylidene difluoride membranes (Bio-Rad) at 50 V for
60 min and then blocked in 5% nonfat dry milk. After an
overnight incubation with the primary antibody at 48C, the
membranes (blots) were incubated with secondary antibody for
60 min at room temperature. The primary antibodies used were
all purchased from Cell Signaling: total and phospho-mTOR
(Ser2448; 1:1000), total and phospho-p70 S6K1 (Thr389; 1:250),
and total and phospho-4E-BP1 (Thr37/46; 1:1000). Anti-rabbit
IgG horseradish peroxidase–conjugated secondary antibody was
purchased from Amersham Bioscience (1:2000). After second-
ary incubation, the blots were washed and exposed to a chemi-
luminescence reagent (ECL plus Western Blotting Detection
System; Amersham Biosciences). Optical density measurements
were made with a ChemiDoc XRS imaging system (Bio-Rad);
densitometric analysis was performed by using Quantity One
1-D analysis software (version 4.5.2; Bio-Rad). The activity of
each protein was expressed as phosphorylated/total, and fold
change was calculated as postprandial activation/postabsorptive
activation.

Skeletal MPS

Venous blood samples were immediately mixed and pre-
cipitated in tubes containing 1 mL sulfosalicylic acid solution.
Samples were centrifuged for 20 min (3000 rpm and 48 C), and
the supernatant was removed and frozen (2808C) until analysis.
After thawing, blood amino acids were extracted from 500 mL
supernatant by cation exchange chromatography (Dowex AG
50W-8X, 100–200 mesh H+ form; Bio-Rad Laboratories).
Phenylalanine enrichments were determined on the tert-
butyldimethylsilyl derivative by using gas chromatography–
mass spectrometry (HP model 5973; Hewlett-Packard) with
electron impact ionization. Ions 336 and 342 were monitored.
Muscle biopsy samples were immediately rinsed in ice-cold saline,
blotted, and frozen in liquid nitrogen until analysis. Frozen
samples were cut on dry ice (w25 mg) and weighed, and protein
was precipitated with 800 mL 10% perchloric acid. Approxi-
mately 1.5 mL supernatant was collected after tissue homoge-
nization and centrifugation and processed in the same manner as
the supernatant from the blood samples (Dowex AG 50W-8X,
200–400 mesh H+ form). Intracellular phenylalanine enrich-
ments were determined by using the tert-butyldimethylsilyl
derivative. The remaining muscle pellet was washed and dried,
and the proteins were hydrolyzed in 3 mL of 6 N HCl at 1108C
for 24 h. The protein-bound L-[ring-13C6]phenylalanine enrich-
ments were determined by using gas chromatography–mass
spectrometry with electron impact ionization. Ions 238 and 240
were monitored for bound protein enrichments; ions 336 and
342 were monitored for intracellular enrichments.

Postabsorptive and postprandial mixed muscle protein FSRs
(%/h) were calculated by measuring the direct incorporation of
L-[ring-13C6]phenylalanine into protein by using the precursor-
product model (5, 8, 35, 38, 39) as follows:

FSR ¼ EP2 2EP1

Em 3 t
3 60 3 100 ð1Þ

where EP1 and EP2 are the bound enrichments of L-[ring-13C6]
phenylalanine for 2 muscle biopsies, Em is the mean enrichment
of L-[ring-13C6]phenylalanine in the muscle intracellular pool,
and t represents the time interval (min) between the 2 biopsies
(e.g., 180 min).

Body composition

Whole-body lean mass (WBLM), leg lean mass (LLM),
whole-body fat mass, and body fat percentage were determined
by dual-energy X-ray absorptiometry on days 3, 10, and 17
(Lunar iDXA; GE Medical Systems). To standardize and mini-
mize the effects of fluid shifts, subjects were required to lie supine
for 10 min before scanning.

Muscle function

Unilateral knee and ankle extensor strength [peak torque;
Newton-meter (Nm)] and knee muscle endurance (total work)
were assessed using isokinetic dynamometry on days 2 and 19
(Biodex System 4; Biodex Medical Systems). Familiarization
sessions were conducted on admission (day 1). Peak torque was
assessed via 5 maximal repetitions at 608/s (knee and ankle) and
1808/s (knee only), whereas knee total work/muscular endurance

FIGURE 2 Metabolic study timeline. Postabsorptive and postprandial
cell signaling were determined from biopsy samples 1 and 3, respectively.
Postabsorptive FSR was calculated by using biopsy samples 1 and 2; FSR in
the postprandial state was determined by using biopsy samples 2 and 4.
Control group, n = 9; leucine-supplemented group, n = 10. Bx, muscle bio-
psy; EAA, essential amino acid; FSR, fractional synthesis rate.
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was assessed using 20 repetitions at 1808/s. An estimate of
muscle quality was determined by dividing right knee extensor
peak torque by right LLM.

Peak aerobic capacity

Peak oxygen uptake (V _O2peak) was assessed with a metabolic
cart (VMax Encore 29; Care Fusion) using a graded exercise test
on a cycle ergometer on days 2 and 19 (Monark Ergomedic 828E;
Monark Exercise). Data were expressed in absolute (L/min) and
relative terms (mL ∙ kg body mass21

∙ min21 and mL ∙ kg lean
mass21

∙ min21) to account for potential changes in body com-
position during bed rest.

Statistical analyses

All analyses were performed by using Stata 14.0 software
(StataCorp LP). Mixed-effects linear regression techniques were
used to analyze all dependent variables with Stata’s “xtmixed”
command. MPS, body composition, muscle function, and aer-
obic capacity outcomes were analyzed with group and time fixed

effects plus a group 3 time interaction term; models also in-
cluded a random intercept term to accommodate the within-
subject experimental design. Cell signaling outcomes were
analyzed with group, time, and fed state (postabsorptive com-
pared with postprandial) as fixed effects and all resultant in-
teraction terms. Statistical assumptions were tested before
interpreting results (e.g., normally distributed residuals, outlier
detection). When model residuals were skewed, a natural log
transformation was performed to meet the normality assumption
of this statistical technique; in some instances, it was necessary
to exclude overly influential outlying values to meet model as-
sumptions. The interaction effects (group 3 time) examining
changes relative to pre–bed rest were of primary interest be-
cause, pursuant to the hypotheses of the study, they compared
changes between groups. Only when a significant interaction
effect was detected were individual contrasts performed to
evaluate within-group changes between time points; Bonferroni
corrections were made to adjust for the inflated type I error risks
imposed by these additional comparisons. Data are expressed as
means 6 SEMs; significance was set a priori at P # 0.05.

RESULTS

Subjects

All of the subjects who passed the medical screening and were
admitted to the inpatient, experimental phase of the protocol
successfully completed the study (see Supplemental Figure 1).
Compliance was also excellent as all subjects rigorously adhered
to the diet, supplementation, and bed-rest requirements of the
protocol; there were no adverse events related to participation in
the study.

Diet and supplementation

Total energy and macronutrient consumption throughout the
study was similar in the CON and LEU groups. Meal-specific and
24-h dietary intake data during bed rest are presented in Table 2.
Dietary protein intake (unsupplemented) was 0.95 6 0.02 and

TABLE 2

Nutritional intake during bed rest1

Group

and meal

Energy,

kcal Carbohydrate, g Fat, g Protein, g Supplement, g

CON

Breakfast 656 6 12 84 6 2 26 6 1 25 6 1 4.5 6 0.2

Lunch 609 6 16 87 6 2 20 6 1 24 6 1 4.5 6 0.2

Dinner 660 6 13 98 6 2 20 6 1 26 6 1 4.5 6 0.2

Total 1837 6 42 258 6 6 62 6 2 71 6 1 13.5 6 0.6

LEU

Breakfast 666 6 12 87 6 2 26 6 1 25 6 1 4.4 6 0.2

Lunch 602 6 16 86 6 2 20 6 1 23 6 1 4.4 6 0.2

Dinner 656 6 13 97 6 2 20 6 1 26 6 1 4.4 6 0.2

Total 1831 6 42 258 6 6 62 6 2 71 6 2 13.2 6 0.7

1Values are means 6 SEMs; n = 9 (CON) and n = 10 (LEU). CON,

control group; LEU, leucine-supplemented group.

TABLE 3

Cell signaling and skeletal muscle protein synthesis before and after 14 d of bed rest1

Pre–bed rest Post–bed rest

CON LEU CON LEU

mTOR (Ser2448), fold change 2.2 6 0.4 2.3 6 0.4 2.8 6 0.5 2.2 6 0.3

S6K1 (Thr389), fold change 3.5 6 1.0 3.1 6 0.8 2.2 6 0.6 2.6 6 0.7

4E-BP1 (Thr37/46), fold change 1.4 6 0.1 1.4 6 0.1 1.2 6 0.1 1.4 6 0.1

FSR, %/h

Postabsorptive 0.062 6 0.005 0.077 6 0.004 0.042 6 0.005 0.068 6 0.005

Postprandial 0.093 6 0.014 0.083 6 0.013 0.090 6 0.014 0.083 6 0.014

1Values are means 6 SEMs and were assessed on days 4 and 18; n = 9 (CON) and n = 9 (LEU). The activity of each

signaling protein was expressed as phosphorylated/total, and fold change was calculated as postprandial activation/post-

absorptive activation. Cell signaling data were analyzed with a mixed-effects model in which time, group, and fed state

(postabsorptive compared with postprandial) were fixed effects and subject was a random effect; FSR data were analyzed

with a mixed-effects model in which time and group were fixed effects and subject was a random effect. No differences

between groups with respect to pre-post changes (group 3 time interaction effects) were detected for any cell signaling or

muscle protein synthesis outcome. All cell signaling outcomes showed a main effect of feeding (P , 0.05 compared with

postabsorptive) both pre– and post–bed rest. Postabsorptive FSR showed a main effect of time (P , 0.05 compared with

pre–bed rest). CON, control group; FSR, fractional synthesis rate of skeletal muscle; LEU, leucine-supplemented group;

mTOR, mammalian target of rapamycin; S6K1, p70 S6 kinase 1; 4E-BP1, 4E binding protein 1.
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0.98 6 0.02 g ∙ kg21
∙ d21 for the CON and LEU groups, re-

spectively.

Cell signaling

No differences between groups with respect to pre-post
changes (group3 time interaction effects) were detected for any
cell signaling outcomes. Before bed rest, the research meal in-
creased phosphorylation of mTOR (Ser2448), S6K1 (Thr389), and
4E-BP1 (Thr37/46) (main effect for feeding, P , 0.05, compared
with postabsorptive; Table 3); these collective feeding responses
were maintained after bed rest (main effect for feeding, P ,
0.05, compared with postabsorptive; Table 3).

Skeletal MPS

Subjects remained in isotopic steady state throughout the
infusion studies (Figure 3). No differences between groups with
respect to pre-post changes (group 3 time interaction effects)
after 14 d of bed rest were detected for postabsorptive or post-
prandial MPS, although the CON group experienced a 30% 6
9% reduction in postabsorptive FSR compared with a 10% 6
10% decrease in the LEU group (main effect for time, P , 0.05,
compared with pre–bed rest; Table 3). Bed rest did not alter
postprandial FSR (main effect for time, P . 0.05, compared
with pre–bed rest).

Body composition

Body-composition data are presented in Table 4. Bed rest had
a rapid and profoundly negative effect on lean tissue mass in
middle-aged adults. After 7 d of bed rest, the CON group ex-
perienced reductions of 2.9% 6 0.5% and 5.1% 6 0.9% in
WBLM and LLM, respectively (both P , 0.05 compared with
pre–bed rest), whereas leucine supplementation attenuated these
losses (WBLM: 21.7% 6 0.5%, group 3 time interaction, P ,
0.05; LLM: 23.2% 6 0.6%, group 3 time interaction, P =
0.09). After 14 d of bed rest, no differences between groups with
respect to pre-post changes (group 3 time interaction effects)
were detected, and both groups sustained significant losses in
muscle mass (WBLM: CON compared with LEU, 22.8% 6
0.6% compared with 22.1% 6 0.7%; LLM: CON compared
with LEU, 26.8% 6 0.9% compared with 25.0% 6 0.8%; all
P , 0.05 compared with pre–bed rest). During bed rest, the
CON group experienced modest, yet significant increases in
whole-body fat mass and body fat percentage. Leucine supple-
mentation prevented the accumulation of body fat (Table 4).

Muscle function and quality

Bed rest had a negative impact on all indexes of muscle
function (Table 5). Leucine supplementation partially or fully
protected most outcomes, including knee extensor peak torque
at 608/s (CON compared with LEU: 215% 6 2% compared
with27%6 3%; group3 time interaction, P, 0.05) and 1808/s
(CON compared with LEU: 219% 6 3% compared with 26%
6 2%; group 3 time interaction, P , 0.05) and knee extensor
endurance (CON compared with LEU: 214% 6 3% compared
with 22% 6 4%; group 3 time interaction, P , 0.05). Muscle
quality (relative strength) was also negatively affected by bed
rest (CON: 29% 6 2%; P , 0.05 compared with pre–bed rest)
but was preserved by leucine supplementation (LEU: +1% 6
3%; group 3 time interaction, P , 0.05; Table 5). No differ-
ences between groups with respect to pre-post changes (group3
time interaction effects) were detected for absolute or relative
(mL ∙ kg21

∙ min21) V _O2peak (main effects for time, P , 0.05,
compared with pre–bed rest); a trend for a group 3 time effect
was present for V _O2peak relative to lean mass (mL ∙ kg lean
mass21

∙ min21; P = 0.09). In the CON group, bed rest reduced

FIGURE 3 Plasma enrichment of L-[ring-13C6]phenylalanine (tracer:
tracee ratio) during metabolic studies; enrichments for pre– and post–
bed-rest metabolic studies were averaged within groups. Values are
means 6 SEMs; CON, n = 9; LEU, n = 10. CON, control group; LEU,
leucine-supplemented group.

TABLE 4

Body composition (DXA) before and after 7 and 14 d of bed rest1

Pre–bed rest Mid–bed rest, D Post–bed rest, D

CON LEU CON LEU CON LEU

Body mass, kg 75.7 6 3.9 73.1 6 3.7 20.9 6 0.2* 20.9 6 0.2* 21.2 6 0.2* 21.0 6 0.2*

WBLM, kg 51.4 6 3.1 49.5 6 2.9 21.5 6 0.3* 20.8 6 0.3*y 21.5 6 0.3* 21.0 6 0.3*

LLM, kg 17.3 6 1.1 17.1 6 1.1 20.9 6 0.1* 20.5 6 0.1* 21.2 6 0.1* 20.9 6 0.1*

WBFM, kg 22.3 6 2.7 21.0 6 2.5 0.4 6 0.2* 20.2 6 0.1y 0.4 6 0.2 0.1 6 0.1

Body fat, % 29.7 6 3.3 29.8 6 3.1 0.9 6 0.2* 0.2 6 0.2y 0.9 6 0.2* 0.5 6 0.2y

1Values are means 6 SEMs and were assessed on days 3, 10, and 17; n = 9 (CON) and n = 10 (LEU). Data were

analyzed with a mixed-effects model in which time and group were fixed effects and subject was a random effect. Within

group, pre– to post–bed-rest comparisons were Bonferroni-corrected to minimize the potential for type I errors. A trend for

a group 3 time interaction effect was present for LLM (P = 0.09). ySignificant interaction effect (group 3 time compared

with pre–bed rest, P , 0.05); *different from pre–bed rest, P , 0.05. CON, control group; DXA, dual-energy X-ray

absorptiometry; LEU, leucine-supplemented group; LLM, leg lean mass; WBFM, whole-body fat mass; WBLM, whole-

body lean mass; D, change.
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V _O2peak by 214% 6 4%, 212% 6 4%, and 212% 6 4%
(absolute, relative to body mass, and relative to lean mass, re-
spectively) (Table 6); for the LEU group, these changes were
28%6 3%,26%6 3%, and26%6 3%, respectively (Table 6).

DISCUSSION

Bed rest has a rapid and profoundly negative impact on skeletal
muscle metabolism, lean tissue mass, and function in otherwise
healthy middle-aged adults. The rate and magnitude of lean mass
loss were substantially greater than in previously studied cohorts
of younger adults but were consistent with changes reported in
older bed-rest study participants. Leucine supplementation pre-
served post–bed-rest anabolic cell signaling and skeletal MPS
and had a partial protective effect on body composition and
muscle function outcomes.

Bed-rest studies provide an opportunity to examine the con-
sequences of physical inactivity in a controlled, standardized
environment. The model is also well suited to examine mecha-
nisms of action and translational outcomes in a short period of
time. Most early bed-rest investigations were designed as flight
analog studies, modeling the effects of microgravity. Enrollment
was largely restricted to healthy young men ,40 y of age (5, 7,
19–21, 40–43). Later, investigators recognized the potential

clinical relevance of the bed-rest model and started to conduct
inpatient analog studies in healthy older men and women (.65 y)
to reflect the reduced physical activity associated with aging,
hospitalization, illness, and injury. Although unloading models
that target a single limb (e.g., limb suspension, immobilization)
have adversely affected younger adults more than their older
counterparts (44, 45), whole-body bed-rest studies appear to
have a greater negative effect on muscle mass and function in
older populations (1, 2, 4, 5, 46, 47).

We enrolled volunteers with a mean (middle-) age squarely
between those of previous bed-rest study cohorts (52 6 1 y).
This “pre-elderly” population shows few negative metabolic or
phenotypic consequences of aging but has increasing repre-
sentation in hospitalized inpatient populations (48) and spe-
cialized groups such as the astronaut corps (49). Although
direct translation of our results to these populations would be
premature, our data do support the need for clinical trials tar-
geting physically inactive/mobility-impaired cohorts. Studies
that directly compare specific age groups (e.g., young compared
with middle-aged compared with older adults) and/or disuse-
model differences (i.e., bed rest compared with limb immobi-
lization) would be particularly valuable.

We hypothesized that middle-aged volunteers would experi-
ence a modest reduction in key outcomemeasures intermediate to

TABLE 5

Muscle function before and after 14 d of bed rest1

Pre–bed rest Post–bed rest, D

CON LEU CON LEU

Knee extensor torque at 608/s, Nm 159 6 13 148 6 12 224 6 4* 210 6 4*y

Knee extensor torque at 1808/s, Nm 104 6 10 103 6 10 220 6 3* 25 6 3*y

Knee extensor total work at 1808/s, J 1630 6 196 1685 6 185 2248 6 63* 220 6 56y

Ankle extensor torque at 608/s, Nm 66 6 6 57 6 5 214 6 4* 29 6 3*

Muscle quality, Nm ∙ kg right leg lean mass21 18.7 6 1.0 17.2 6 0.9 21.6 6 1.3* 0.1 6 1.3y

1Values are means 6 SEMs and were assessed on days 2 and 19; n = 9 (CON) and n = 10 (LEU). Muscle quality was

calculated as knee extensor peak torque (at 608/s)/right leg lean mass (Nm/kg). Data were analyzed with a mixed-effects

model in which time and group were fixed effects and subject was a random effect. Within group, pre– to post–bed-rest

comparisons were Bonferroni-corrected to minimize the potential for type I errors. ySignificant interaction effect (group 3
time compared with pre–bed rest, P , 0.05); *different from pre–bed rest, P , 0.05. CON, control group; LEU, leucine-

supplemented group; Nm, Newton-meter; D, change.

TABLE 6

Aerobic capacity before and after 14 d of bed rest1

Pre–bed rest Post–bed rest, D

CON LEU CON LEU

V _O2peak

L/min 2.05 6 0.17 2.14 6 0.16 20.24 6 0.07 20.15 6 0.07

mL ∙ kg21
∙ min21 27.3 6 2.0 28.9 6 1.9 22.6 6 0.9 20.8 6 0.9

mL ∙ kg lean mass21
∙ min21 41.5 6 2.2 42.4 6 2.2 25.2 6 1.8 20.8 6 1.8

Peak workload,2 W 164 6 16 168 6 15 222 6 7 218 6 3

Peak heart rate,2 beats/min 168 6 5 169 6 6 1 6 3 6 6 3

1Values are means 6 SEMs and were assessed on days 2 and 19; n = 8 (CON) and n = 9 (LEU). Data were analyzed

with a mixed-effects model in which time and group were fixed effects and subject was a random effect. All V _O2peak

outcomes showed a main effect of time (P, 0.05 compared with pre–bed rest); a trend for a group3 time interaction effect

was present for V _O2peak relative to lean mass (P = 0.09). CON, control group; LEU, leucine-supplemented group;

V _O2peak, peak oxygen uptake; D, change.
2Peak workload and peak heart rate are presented descriptively and were not subjected to statistical testing.
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the documented losses in younger and older cohorts. However,
the loss of LLM in our middle-aged control group (aged 526 1 y;
21.2 6 0.1 kg over 14 d) was w3-fold greater than in studies
with younger participants (aged 38 6 8 y; 20.4 6 0.1 kg over
28 d) (5, 7) and was consistent with losses reported in older
adults (aged 67 6 5 y; 21.0 6 0.2 kg over 10 d) (2). A similar
pattern was observed for most muscle function outcomes. The
relative loss of isokinetic knee extensor peak torque during bed
rest in both middle-aged (215%; pre compared with post:
159 6 12 compared with 135 6 11 Nm) and older adults
(216%; pre compared with post: 120 6 11 compared with
101 6 9 Nm) (2) was similar, although absolute strength values
in older adults were lower, which increases the risk of impaired
functional performance (50, 51).

The potential for middle-aged adults to experience such a rapid
and substantial loss of muscle mass and function after a relatively
short period of bed rest underscores the need for continued
education, preventative efforts, and effective treatment options
for all age groups. Although any form of physical loading is
clearly desirable in most inactivity/bed-rest settings (11), we
chose to model a quasi–worst case situation in which nutritional
support (leucine supplementation) was the only available ex-
ogenous anabolic stimulus.

Our decision to use a single amino acid to protect muscle
health during bed rest was supported by the mechanistic and
practical attributes of leucine. We hypothesized that a small
amount of leucine added to the moderate amount of protein
consumed during regular meals (25 g protein/meal) would serve
as an anabolic trigger (52) and positively influence cell sig-
naling (mTOR, S6K1, and 4E-BP1) and skeletal MPS (24, 26,
53, 54). We anticipated that this, in turn, would have a protective
effect on body composition and muscle function. Previously,
we successfully manipulated this translational pathway in
a series of bed-rest studies in young (5) and older (50) adults by
providing large quantities of all of the essential amino acids
(49.5 g/d). Despite showing proof of concept, these
studies lacked clinical relevance because of issues such as
poor palatability, high cost, and large fluid volume and energy
content of the supplement (18). The leucine supplement used
in the present study contributed only 18 kcal/meal (54 kcal/d),
was easily combined with regular menu items, and was well
tolerated by study participants. Similar positive results were
also reported by Deutz et al. (47), who used a very small
amount (1.5 g twice daily, total of 3 g/d) of the leucine me-
tabolite b-hydroxy-b-methylbutyrate to preserve muscle mass
in older adults (60–76 y) during 10 d of bed rest. Although it is
possible, or even likely, that additional protein or leucine-rich
foods would also have a protective effect (55), continued ef-
forts to develop efficient, mechanistically targeted, yet practi-
cal interventions may have broader clinical relevance. Our
volunteers consumed w1.15 g protein ∙ kg21

∙ d21 (meals and
supplement) and lost muscle mass while gaining body fat.
Exceeding this moderate quantity of protein may be
beneficial in many situations (e.g., flight analog studies, hyper-
metabolic patient populations) (55, 56). However, it may be
challenging or impractical for individuals with lower energy
requirements, dietary restrictions, or satiety issues (57). In such
instances, promoting muscle anabolism via a lower volume,
lower energy alternative would be of considerable practical
value.

Leucine supplementation had a positive, protective effect on
almost all of our outcome measures. However, it must be stressed
that leucine did not fully prevent the loss of muscle mass or
function during bed rest. Furthermore, the protective effects may
have a limited time course. Leucine appeared to exert its greatest
protective effect on lean mass during the initial week of our
14-d protocol. During the final 7 d, the rate of loss in the LEU
group was similar to that in the CON group (Table 4). One of the
more novel effects of leucine was its ability to protect muscular
endurance (knee extensor total work) and to a lesser extent
V _O2peak during bed rest. Whereas physical activity fully (58,
59) or partially (60) protects aerobic capacity during bed rest,
the potential effect of leucine on muscle energetics and mito-
chondrial function merits further attention (61, 62).

A methodologic limitation of this study was the use of an
essential amino acid test meal during the metabolic studies.
Although providing a robust and reproducible acute anabolic
stimulus, the test meal did not represent the whole-food meals
consumed during bed rest and may have hampered our ability to
detect anabolic resistance or changes in cell signaling and
postprandial MPS (2, 7–10). Similarly, our small sample size
may have reduced our statistical power and impaired our ability
to identify between-group differences.

In summary, strategies and behaviors to protect muscle health
during periods of inactivity should not focus exclusively on older
individuals. Bed rest of 14 d has a profoundly negative effect on
muscle metabolism, mass, and function in healthy middle-aged
adults. Leucine supplementation has the potential to be a simple,
minimally invasive dietary strategy to help preserve muscle
health during relatively brief periods of physical inactivity.
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